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The vortex core shed from rotorcraft blades maintains coherency—and thus dynamic
relevance—many blade turns after its creation. This presents a challenge to traditional
Eulerian computational methods, as fine grids are required to suppress numerical diffusion
which would weaken the vortex cores after a small number of revolutions. Vortex methods
have been used in the past to overcome these problems, as they require computational
elements only in vorticity-containing regions, but suffer from greater computational cost
per element. In the present work, we will solve these problems with a hybrid Eulerian-
Lagrangian method for modeling rotor wakes. An Eulerian OVERFLOW overset grid
method computes the near-body flow, while a Lagrangian particle vortex method tracks the
wake. The vortex method uses an anisotropic LES model to handle subgrid-scale dissipation
explicitly. The computational cost of vortex methods is alleviated by using a parallel
adaptive treecode on a cluster of machines each with multi-core CPUs and multiple cost-
efficient graphics processing units (GPUs). Simulations of a low-Re sphere, finite wing, and
4-bladed rotor model are presented and are validated by comparisons with computational
and experimental data.

I. Introduction

Rotorcraft operate in a highly complex vortex-dominated aerodynamic environment, characterized by
unsteady non-homogenous turbulent flow interacting with the craft structure. The fuselage bluff body is
often associated with unsteady separated flow. Further, the rotating blades generate highly energetic vortices,
which invariably lead to the familiar phenomenon of blade-vortex interactions (BVI). BVI induces unsteady,
non-periodic impulsive airloads along the length of the blades; thereby, increasing the vibration of the blades
and the airframe. This has a strong impact on the stability of flight dynamics as well as the fatigue life of the
vehicle. A comprehensive design and analysis tool that can predict the coupled fluid, structural, and vehicle
dynamics of rotorcraft with high fidelity would greatly enhance the capability of the designer or analyst to
understand the physics of the problem with better clarity, and it will ultimately lead to optimal aircraft
designs.

Eulerian computational fluid dynamics methods are very efficient in accurately resolving the flow in the
immediate vicinity of the helicopter boundary, which is primarily anisotropic and essentially unidirectional in
nature. Furthermore, mature technologies exist for Eulerian simulation of compressible flow, which, for rotor
blades, is most significant within this same near body region. However, as is well known within the CFD
community, the method is notoriously diffusive and tends to dampen high-intensity vortical structures within
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a very short distance away from the boundary. Eulerian remedies for this problem would be to use high-order
discretization and/or high-resolution simulation, as well as to implement adaptive gridding. Alternatively,
Lagrangian Vortex Particle Methods (LVPM) are ideal for accurately capturing and maintaining the long-
time characteristics of the unsteady compact vortical structures that shed off the helicopter blades and the
fuselage. In the present work, we aim to take advantage of positive qualities of each of these methods by
modeling rotorcraft vortex wakes with particle vortex methods, while using more established overset Eulerian
grid methods to solve the near-body flow regions.

Previous work in modeling rotorcraft wakes generally follows one of following methods. Potsdam et
al.1 use the purely-Eulerian OVERFLOW-D solver with multiple rotating overset grids to compute the wake
behind a model of the UH-60A 4-bladed rotor. To reduce the computational effort, the cell size of the
finest overset grids covering the blades was 0.1c (approximately the diameter of a rotor tip vortex core) thus
significant diffusion was observed. Whitehouse et al.2 demonstrates an Eulerian-based vorticity transport
method and as such are still limited by the CFL criterion. In contrast, Quackenbush et al.3 use a Lagrangian
free-wake model which does not model the near-body flow accurately, instead assuming a given vortex core
strength emanating from the blade tips. He and Zhao4 present a low-resolution vortex particle method,
but also do not model the near-body region. In that method, a lifting line calculation sets the vorticity on
newly-generated particles, and thus ignores important three-dimensional effects.

A vortex particle method solves the incompressible vorticity transport equations in Lagrangian form by
discretizing vorticity as particles. The kinematic velocity-vorticity relationship is solved in a grid-free fashion
by convolving the Biot-Savart integral with a Gaussian core function. Fast algorithms for the Biot-Savart
integration are available, the two most common being the multipole treecode5 and Fast Multipole Method
(FMM).6 These methods use hierarchical subdivision of the problem space to reduce computation. The
present method uses an improvement of a treecode developed previously.7

II. Method

The present methodology involves using an Eulerian flow solver to compute the near-body flow, and a
vortex particle method with Large Eddy Simulation (LES) capability to solve for the wake. Between these
two domains is an interface or buffer region where the results of the two solvers must be coincident.

II.A. Eulerian region

The solution in the near-body region is computed with version 2.1ae of the OVERFLOW solver.8 OVER-
FLOW is a fully-compressible, Eulerian, Navier-Stokes flow solver that uses Chimera overset (structured)
grids for resolution adaptation. OVERFLOW supports shared- and distributed-memory parallelism9 and a
variety of turbulence models.10

A standard OVERFLOW run will capture the far-field condition using a series of nested overset grids
extending to ! 10 times the characteristic body dimension. The proposed hybrid method only requires the
closest grids—typically only the body-fitted grids, but an optional overset Cartesian grid may be added if
the outer boundaries of the body-fitted grids do not coincide closely.

In the cases below, the immersed bodies will be covered with a number of overlapping body-fitted curvi-
linear grids and possibly a surrounding Cartesian off-body grid. The outermost grid for each body will extend
approximately one chord length from the surface in all directions. The hybrid scheme does not require a
series of increasingly-coarser overset grids to approximate the far-field boundary condition.

OVERFLOW is known to be inaccurate in the case of impulsive start-up, a situation that vortex methods
typically handle well. Because all of the runs presented use an impulsive start-up, a minor modification to
OVERFLOW was introduced. The number of solver substep iterations was increased by nearly ten-fold for
the first time step, and was gradually reduced to the default after 24 steps. This action alone mitigates many
of the undesirable flow artifacts due to impulsive start-up.

II.B. Lagrangian region

The wake region will use Ω-Flow, a Fast Multipole treecode solver created at Applied Scientific Research
(ASR).7,11,12 This solver uses Lagrangian vortex particles, a hierarchical spatial decomposition scheme,
and high-order multipole treecode solver5 to calculate the velocities and velocity gradients at any point in
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space. Ω-Flow distributes the computational load to all local CPUs and compute-capable GPUs, and among
distributed-memory computers in a cluster.

The fluid velocity !u(!x) in a compressible wall-bounded flow is prescribed by the following generalized
Helmholtz integral formula in terms of the fluid vorticity !ω, vortex sheet strength !γ, dilatation θ, and the
boundary velocity !u(!x′):

!u(!x) = !U∞ + ∇×

∫

V
!ω(!x′)G(!x, !x′) dV (!x′)

−∇

∫

V
θ(!x′)G(!x, !x′) dV (!x′)

+ ∇×

∫

S

(

!γ(!x′) + n̂(!x′) × !u(!x′)
)

G(!x, !x′) dS(!x′)

−∇

∫

S

(

n̂(!x′) · !u(!x′)
)

G(!x, !x′) dS(!x′)

(1)

where G(!x, !x′) = 1/(4π|!x − !x′|) is the Green’s function in 3D, n̂ is the unit normal into the fluid domain,
and !U∞ is the freestream velocity. Though the Eulerian region solves the fully-compressible equations, the
flow in the Lagrangian region is assumed to be incompressible (θ = ∇ · !u = 0). The volume and surface
integrals in Eqn. (1) are discretized using Gaussian-cored particles and piecewise constant triangular panels,
respectively. Unlike the OVERFLOW solver which supports variable spatial resolution, the vortex particle
solver at present uses only uniform-sized particles. The vorticity transport equations are solved in the
Lagrangian frame using a second-order forward integrator via the following equations:

d!xp

dt
= !up (2)

d!Γp

dt
= Γp ·∇!up (3)

d!ωp

dt
=

1

Re
∇2!ωp (4)

For direct numerical simulation (DNS) runs, a Vorticity Redistribution Method (VRM)13,14 computes
the viscous diffusion term by calculating the transfer of circulation between neighboring particles. Most of
the simulations in the present work, though, are sufficiently inviscid (Re > 106) that this method is not
necessary.

The anisotropic subgrid-scale (SGS) model used in the present work is from Cottet et al.15,16 and contains
no ad hoc constants to evaluate. The anisotropic tensoral diffusion term arises from the Taylor series
analysis of the truncation error in the regularized/smooth equations for vorticity transport, and arises as a
consequence of using smooth vortex particles to discretize the vorticity field. The only SGS physical modeling
component of the method is that we will clip negative diffusivity (back-scatter) and leave contributions in
the direction of dissipation untouched. This limits the unbounded growth of enstrophy while still allowing
sufficient dumping of energy to the sub-grid scales. This leads to computational stability as well as to
demonstrated superior modeling accuracy compared to the standard Smagorinsky SGS model.16

A boundary element method (BEM) solution is performed for every forward integration substep, and
is used to set the bound vortex sheet strength (!γ) appearing in Eqn. (1) on each of the triangular panels.
Details of this method appear in coincident work.12

The particle vortex method used for the wake has been parallelized to function on distributed-memory
computers. The particles are split across all available processors using orthogonal recursive bisection, with
a dynamic weighting factor being used to balance the computational load17 at every time step. Locally-
essential trees are built and recursively shared across all processors.

While the overall algorithm for the multipole treecode particle solver remains similar to our previous CPU-
GPU work,7 some details differ. In particular, portions of the tree-building process have been migrated to
the GPU, the far-field component casts spherical multipoles into a Cartesian formulation, and much of the
effort of computing the multipoles is now done on the GPU. These differences are described in more detail
in coincident work.12 Both this new implementation and previously-published FMM-GPU work18,19 exhibit
high parallelism across multiple GPUs and multiple compute nodes.
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II.C. Overlap region and coupling algorithm

The interface region between the Eulerian and Lagrangian flow solvers requires careful consideration to allow
smooth transitions of the flow solution between the Eulerian and Lagrangian regions. From the body surface
to somewhat inside of the outer Eulerian domain, the Eulerian solution is assumed to be correct; adjacent to
and outside of the outer Eulerian boundary the Lagrangian solution is valid. The essence of the algorithm is
this: the vortex particle method determines the outer boundary conditions for the Eulerian method, and the
subsequent Eulerian solution changes vortex particle strengths in a specific, limited volume. This algorithm
is a modification of previous work by Guermond and Lu20 and Daeninck.21

Assuming that at time t all regions have access to a correct solution, whether it be from the Eulerian or
Lagrangian data, the breakdown of a time step is as follows:

1. Interpolate vorticity from the Eulerian grid to the particles using the following procedure:

(a) Prepare a temporary vector-valued Cartesian grid with ∆x = δv (the nominal particle spacing)
that covers the entire Eulerian grid volume.

(b) Interpolate the vorticity of all Eulerian grid nodes farther than dclip∆x from the body surface
onto that temporary grid. This ignores the very strong vorticity present in the boundary layer
which would otherwise lead to numerical problems in the following steps. Setting dclip = 1 is
sufficient to avoid noise in the interpolation stage during high-Re runs.

(c) Identify all particles that are within the Eulerian region, are more than dsurf ∆x from the body,
and more than dbdry∆x from the outer boundary. These coefficients should be set with regards
to the width of the interpolation kernel and to give extra room for potential inaccuracies at the
outer Eulerian boundary, or for a kernel 2∆x wide, we suggest dsurf = dclip + 2 and dbdry = 2.

(d) Reset the strength of each of those particles using the local particle volume and vorticity interpo-
lated from the grid.

2. Advance the Lagrangian solution to t + ∆t with Ω-Flow. Note that the very near-body particles have
no initial circulation, and that their far-field influence is approximated with the results of a boundary
element method (BEM) solution over the body surface which satisfies the velocity boundary condition
at the body.12,22

3. Fill any gaps in the region within dbufδv of the body with zero-strength particles.

4. Using the particle and panel strengths at t+∆t, compute the velocity at all nodes of the outer Eulerian
boundary.

5. Assuming constant density, calculate the energy term e and set the boundary condition vector.

e =
1

γ(γ − 1)
+

M2

2
(5)

Density is assumed constant in the Lagrangian region for the purpose of this work, even though the
fully compressible Navier-Stokes equations are solved on the near-body grids.

6. Advance the Eulerian solution to t + ∆t with OVERFLOW.

A graphical example of the volumes referred to in step 1 above appears in Fig. 1. The interpolation region
avoids near-body data because of the higher gradients expected there, and avoids the outer OVERFLOW
boundaries because of the errors inherent in the vortex method’s assumption of incompressibility and the
errors due to the evaluation of the boundary velocities due to the near-body particles having zero strength.

This method assures the following: that there are sufficient particles passing through the interpolation
region to capture all vorticity shed from the body, that those particles acquire correct volume-weighted
circulations from the OVERFLOW solution, and that vorticity entering the Euler region from outside
maintains its strength long enough to correctly set the boundary conditions for the OVERFLOW solution.
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Figure 1. Left: slice of OVERFLOW grid for subsequent wing case, showing NACA 0015 wing section and shaded
interpolation region. Right: slice of actual particles superimposed over the same. Only the particles in the shaded
region have their circulations updated with data from the OVERFLOW grid.

II.D. Hardware and environment

The Ω-Flow Fast Multipole Treecode solver is written in Fortran 90, Standard C, and CUDA,23 uses OpenMP
extensions for shared-memory multithreading, and MPI for distributed-memory multiprocessing. OVER-
FLOW is written in Fortran 90 and MPI. Both codes were compiled with the Gnu Compiler Suite, and
CUDA files used CUDA version 2.2. Serial runs were done on a quad-core AMD Phenom at 2.5 GHz with
two NVIDIA GTX 275 GPUs with shader clock speeds of 1.512 GHz. MPI parallel runs were performed on
Lincoln, a 192-node Intel/Tesla cluster computer at NCSA. Each node on Lincoln contains two 4-core Intel
64-bit CPUs at 2.33 GHz and is connected to two of the four GPUs in a NVIDIA Tesla S1070, which has a
shader clock speed of 1.44GHz.

III. Results

Three different test cases were performed to demonstrate the feasibility of the algorithm for interfacing
OVERFLOW and a vortex particle method and to investigate the salient features of the LES modeling of
the wake. The first case is of a sphere at Re = 100. The next case involves a finite-span airfoil following
the experimental work of McAlister and Takahashi,24 and the last models the four-bladed, isolated rotor
reported by Elliot et al .25,26

III.A. Re=100 sphere

The first test is of a unit-diameter sphere in an impulsively-started freestream with ReD = 100 and M∞ = 0.1.
Both the pure OVERFLOW and hybrid solutions use three body-fitted grids—two polar (31 x 31 x 51) and
one circumferential (107 x 241 x 51)—with cell thicknesses starting at 10−3D at the wall and increasing to
0.02D at the outer boundary at r = 0.95D, encompassing 1.413M grid points. The pure OVERFLOW case
additionally defines a first-level overset grid of ∆x = 0.03D to z/D = 3.5 downstream and progressively
coarser grids out to 50D, totalling 4.117M grid points (see Fig. 2). OVERFLOW used ∆t = 0.025 in the
pure solution and ∆t = 0.05 for the hybrid method, and both performed 5 Newton subiterations per time
step. The Lagrangian part of the hybrid solution used a 5120-panel sphere for the BEM, a nominal particle
separation of δv = 0.0447, and ∆t = 0.025. At the final solved step (t = 10), the hybrid run required 858k
particles.

The streamwise velocities from both simulations at t = 10 appear in Fig. 2. Several features from these
results are apparent. First is the excellent match between the hybrid and pure OVERFLOW velocities
out to the end of the first level of off-body grids (inside of which ∆x = 0.03). Beyond this distance,
each halving of spatial resolution necessary in OVERFLOW to satisfy the open boundary condition causes
solution accuracy of OVERFLOW to deteriorate. This is an essential problem with non-automatic resolution
adaptivity in Eulerian methods, but also supports the use of vortex methods for wake modeling, as the open
boundary condition is satisfied with no extra effort. Also apparent is the very smooth transition between
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Figure 2. Downstream and centerline velocity component comparison between full OVERFLOW and hybrid
OVERFLOW–Ω-Flow simulations at t = 10. Note OVERFLOW’s loss of accuracy where the overset grids coarsen.

the Eulerian and Lagrangian regions, even though the interface is within the recirculation bubble and the
particle resolution is coarser than the grid resolution. This shows that the coupling is insensitive to flow
direction. The predicted bubble size of s/D = 0.86 falls in the 0.85 → 0.88 range reported by others in the
literature.27 Finally, at this low Mach, errors from the assumption of incompressibility in the Lagrangian
region appear to be minimal.

III.B. Finite airfoil

The finite-span airfoil study24 includes details of the structure and evolution of the tip vortex emanating from
both round- and square-tipped airfoils, and of surface and wake measurements. These were the most thorough
standard benchmarks available, and will allow partial validation of the flow solution in the OVERFLOW
region and the vortex wake. The experiments to which the subsequent results will be compared consisted of
half of a 6.6 aspect ratio wing at α = 12◦ angle-of-attack with NACA 0015 airfoil geometry, square wing tip,
unit chord length c, in a freestream corresponding to Rec = 1.5×106. These are the c = 52cm and c = 30cm
measurements in McAlister and Takahashi.24 A key difference is that the experiments were conducted in a
closed wind tunnel on a semispan with the tip only 1.9 chords from the wall, while the present numerical
simulations were performed on a complete wing with open boundaries. The experiments show a marked
difference in the streamwise velocity around the vortex core for different chord lengths (and thus different
distances from the far wall) and different Mach numbers, making comparisons to the present free-space
simulations difficult.

The pure OVERFLOW run used multiple, body-fitted, overlapping C-grids (two endcaps with 97 x 69
x 47 nodes and one body grid with 213 x 125 x 47 nodes), three predefined Cartesian off-body grids with
∆x = 0.04c covering the wing itself to −2c < x − xc/4 < 2c and the tip vortexes to 2c < x − xc/4 < 8c,
and a series of reduced-resolution off-body Cartesian overset grids extending to 50c; this required 28.5M
nodes in total. The hybrid run had problems with the very thin trailing-edge cells of the C-grids, so the
OVERFLOW region in the hybrid runs used an O-grid for the body with 265 x 217 x 61 grid points and
two O-grid endcaps, each with 111 x 59 x 61 nodes, extending out to 0.6c, for a total of 4.307M nodes. The
hybrid simulation used uniform particles with a nominal separation of δv = 0.04c, and the mesh used for
BEM had 22,604 panels. Grid-particle interpolation used a CIC kernel with a width of 0.08c—the extra
width was necessary to maintain accuracy near the centerline of the wing, where the Eulerian grid nodes
were often 0.12c apart in the spanwise direction. Future implementations will account for this, and will use
higher-order kernels with compact support.
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Both the pure OVERFLOW and the hybrid runs set M∞ = 0.17, which is slightly different than the
M∞ = 0.13 and 0.22 used in experiments for the c = 52cm and c = 30cm wings, respectively.

Fig. 3 shows various qualities of the Lagrangian region at a state where the near-body vortex core is
sufficiently developed. At this point, the Lagrangian region for the inviscid run contained 946k particles.
Visible are the trailing edge’s starting vortex, the wing tip vortex, a small region of twisting flow where the
two meet, and a slice of the grid-particle interpolation region.

Figure 3. Perspective view of finite wing at α = 12◦ showing wake and vorticity magnitude from inviscid and unremeshed
particle solution. On the left, cross-sections of the tip vortex at z/c = 0.5, 2, 4, 6, 8 are shown with contours of vorticity at
ω = 0.1, 0.2, 0.5, 1, 1.5. In the middle: all particles in a swath 1.5δv wide are shown, along with a slice of the interpolation
grid. In addition, all particles with ω > 0.2 and not obstructing the vorticity sections are shown.

Fig. 4 illustrates the overlap between the Lagrangian and Eulerian solutions for ω = 0.3 and 0.5 for the
inviscid case. Like the sphere case, these results exhibit excellent coupling and very smooth overlap between
the Eulerian and Lagrangian regions for the tip vortex core. The OVERFLOW region captures details of
the flow over the flat wing cap that would be impossible for a practical uniform-resolution vortex method to
capture. A hybrid method is the easiest way to achieve both this level of accuracy at the body surface yet
maintain undiffused vortex cores in the far wake.

Figure 4. NACA 0015 wing with flat tip at α = 12◦ (magenta) and isosurfaces of vorticity from both OVERFLOW
(grey), and inviscid particle solution (blue); left: ω = 0.3, right: ω = 0.5.
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The vertical velocity across the wing tip vortex at various downstream stations appears in Fig. 5. First,
note that the vortex core in the experiments maintains its size and most of its strength through these stations.
The vortex core from the pure OVERFLOW simulation almost matched this strength at 0.2c, but quickly
decays as it progresses downstream, despite being covered by 2.5 to 3 fine grid cells. The hybrid simulation
using the O-grids could not recreate the velocity spike at 0.2c, but maintains a tighter vortex core where the
pure OVERFLOW simulation decays. Keep in mind that the accuracy of the hybrid solution will always
be limited by the accuracy of the Eulerian solution, therefore the observed error in the OVERFLOW region
(x − xtip = 0.2c) must be the major component of error in the hybrid method.
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Figure 5. Normalized vertical velocity across tip vortex at (x − xtip)/c = 0.2, 1, 2, and 4.

The conditions within which the physical experiments were performed provide several clues to why both
sets of simulation data produced weaker vorticity in the core. The closed wind tunnel used in the experiments
causes an interference upwash that was not corrected for in the reported data. McAlister and Takahashi24

estimate this to be close to that induced by ∆α ≈ 0.5. Other effects of the close wall in the experimental
study can be inferred from the work’s various parameter studies.24 For example, fixing Re, aspect ratio,
and α, but varying the chord resulted in a vortex core with 20% larger scaled diameter (0.1c for c = 52cm
vs. 0.12c for c = 30cm) and a somewhat reduced vortex core strength, presumably because the fixed-distance
wall interfered less with the smaller chord model.

III.C. 4-Bladed advancing rotor

The goal of the present work was to quickly develop a hybrid Eulerian-Lagrangian method suitable to full-
helicopter large eddy simulation. The final case will be that of the four-bladed, isolated rotor tested by Elliot,
Althoff, and Saily.25,26 In those experiments, the advance ratio was 0.2265, M∞ = 0.124, α = −3.04◦, and
Rec = 860, 500. Each blade had a NACA 0012 section with squared tips, extended 3.17 < r/c < 13.3, and
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with a blade twist from 0◦ at r = 0 to 8◦ at rtip. The experimental results included cyclic pitch, but these
simulations are only a first attempt at the rotor problem, and did not. Results from both full OVERFLOW
and the proposed hybrid methods are presented below.

The rotor blades are represented with a series of overset volume grids. An O-grid topology is used for
both the span and tip grids of the rotor for a total of 3 body-fitted grids per blade. The main blade O-
grid measures 265 x 117 x 33 points and identical tips (111 x 59 x 33) are used at each end. The grids
are extended from the blade surface using a hyperbolic tangent stretching function to approximately 0.75c,
totalling 5.6M near-body nodes. The pure OVERFLOW runs have a L1 (finest) grid with ∆x = 0.06c
covering −15 < x/c < 26, −15 < y/c < 15, and −3 < z/c < 2, and a series of reduced-resolution overset
grids extending to the open boundary, making a total of 46.2M grid points. The hybrid method uses the
same near-body grids, but adds an intermediate Cartesian following mesh to extend the OVERFLOW domain
further away from each blade surface. This Cartesian mesh extends to approximately 1c from the surface
and has a spacing of 0.04c. Near-body grids for the hybrid methods total 11.73M nodes. The Cartesian
mesh moves with the same prescribed motion as its parent rotor blade. The OVERFLOW region of the
hybrid method used a Spalart-Allmaras 1-equation turbulence model, performed 10 first-order Newton/dual
subiterations per time step, and advanced one degree per time step. The hybrid method used particles with
0.06c nominal separation. The pure OVERFLOW case uses 9 subiterations and one-half degree per time
step.

Figures 6 and 7 show the development of the rotor wake structures for the hybrid method after 900◦

and 970◦ of rotation of the four-bladed rotor in forward flight with an advance ratio of 0.2265. Note that
because there was no cyclic control applied, the advancing blade generates much more lift than the retreating
blade. Thus, the “tip” vortex trailing from the advancing side of the rotor disk is much stronger than on
the retreating side. The present method can support such a control input, but it was not engaged for this
simulation. The earliest vortexes are connected by a number of transverse braids, a geometry commonly
observed in highly-resolved DNS of three-dimensional vortex sheet roll-up.

Figure 6. Top and side x-ray views of the particle-only vorticity for the rotor case after 900◦ of rotation.
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Figure 7. Isosurface of OVERFLOW and particle vorticity (grey, ω = 0.1) and blades (magenta) after 970◦.

The grid-particle coupling necessary for a successful simulation of blade-vortex interaction is illustrated
in Fig. 8. In these regions, vorticity from the particle domain re-enters the Eulerian domain via its effect on
the OVERFLOW boundary conditions. Once the vortex particles are sufficiently inside of the Euler domain,
their strengths begin to be modified by the OVERFLOW solution.

Figure 9 compares the isosurfaces of vorticity for the present hybrid and pure OVERFLOW simulations
at 720◦. Both cases capture the primary blade-vortex interaction (BVI) and the rapid roll-up of the trailing-
edge sheet into the primary tip vortex. The shapes of both the advancing and retreating-side’s wingtip-like
vortex are similar, as are the primary tip vortexes in the wake. The OVERFLOW case seems to create more
vorticity from the inside edge of the blades. Most notably, however, the vorticity in the pure OVERFLOW
case decays very soon after leaving the finest-resolution (L1) overset grid (∆x = 0.06c). Not even an increase
to ∆x = 0.12c in the L2 grid could maintain the strong vortex core. While it should be a simple effort
to extend the finest-resolution grid farther downstream to capture more of the mid-wake, the cost in extra
grid nodes would quickly become prohibitive, even compared to the relatively-costly vortex method. This
highlights one of the essential differences between Eulerian and Lagrangian methods, and motivates merging
the two to take advantage of the strengths of each. While, obviously, high-order Eulerian solution-adaptive
spatial multiresolution methods would handle this problem well, we also think that adaptive resolution vortex
methods would improve performance while maintaining spatial detail and limiting numerical diffusion. By
focusing effort only where large velocity gradients exist, even uniform-resolution vortex methods such as this
are already solution-adaptive.

For the final solved state (975 degrees), calculation of the velocity and velocity gradient on the 55,187,790
particles due to their own self-influence and the influence of the 96,600 panels finished in 47.54s on 8 nodes
on Lincoln. The slowest node took 46.47s, resulting in 97.7% parallel efficiency, which, considering that the
computational nodes contained between 3.2M and 9.8M particles each, demonstrates the effectiveness of the
method’s dynamic load balancing. This simulation also represents the largest known vortex particle treecode
simulation performed to date.
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Figure 8. Isosurface of OVERFLOW vorticity (grey, ω = 0.1), particle vorticity (blue), and blades (magenta) at 970◦.
Left: retreating blade slicing previous vortex; also forward-pointing blade can be seen slicing retreating blade’s vortex.
Right: advancing blade tip piercing previous primary wingtip-like vortex.

Figure 9. Isosurface of vorticity (grey, ω = 0.1) and blades (magenta) for pure OVERFLOW (left) and Hybrid OVER-
FLOW+particle method (right) at 720◦.

IV. Conclusion

In a short time, we were able to formulate and implement a hybrid Eulerian-Lagrangian method for high-
Re external flows with significant wake effects, such as generated by rotorcraft or maneuvering aircraft. The
method compares favorably with pure Eulerian methods, with the hybrid method capturing and maintaining
tip vortex coherence for many full blade turns. A fairer test, though, would be between a spatially-adaptive
core size Lagrangian method and a high-order solution-adaptive Eulerian method. With a less diffusive
grid-particle interpolation method and more effort to control the particle count, full helicopter simulations
should be possible on a small number of nodes of a CPU-GPU cluster.
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