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ABSTRACT

A grid-free method for the simulation of incompressible
flow over complex 3-D objects is presented. The algorithm is
based on the Lagrangian Vortex Element and the Vorticity
Redistribution methods to account for vorticity dynamics and
diffusion, respectively. The wall velocity boundary conditions
are imposed by solving a Petrov-Galerkin discretization of the
Fredholm boundary integral equation of the second kind for the
vector-valued vortex sheets at the wall. Computations are
accelerated using a MPI-parallel adaptive Fast Multipole
Method (oct-tree code). In this paper, the computational
algorithm is described briefly, and the first in a series of
benchmark results presented using the example of flow over a
sphere at low Reynolds numbers. Preliminary diagnostics of
the present simulations show very good agreement with
previously published data.
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INTRODUCTION

Lagrangian Vortex-Boundary Element Methods (LVBEM)
are a class of particle-based computational techniques best
suited for simulating vortex-dominated incompressible flow
in/around complex geometries. They are grid-free in the fluid
domain; thus, reducing problem setup time significantly.
Furthermore, they are ideal for vortex-dominated flow
simulations thanks to the minimal numerical diffusion and the
dynamic adaptivity of the algorithm. Additionally, continuity
and far-field boundary conditions are satisfied by construction.

The first 3-D LVBEM (for internal flows) was developed
by Gharakhani & Ghoniem and applied to examples of interest
to industry [1-5]. However, these simulations used the random
walk method for diffusion, which is known for its noise,
relatively low accuracy and convergence rate. An advanced
LVBEM was later introduced by Ploumhans et al. [6], and its
robustness as a Direct Numerical Simulation (DNS) tool
demonstrated using the example of flow over a sphere at three
Reynolds numbers up to 1,000. The details of the latter are

beyond the scope of this paper, the primary relevant issue being
the use of Particle Strength Exchange (PSE) [7] for predicting
diffusion. PSE has been used by a number of research groups;
however, it suffers from a few disadvantages. First, it is
guaranteed to conserve only the zeroth moment of the diffusion
equation, but not the higher moments. Second, the PSE
formulation requires the explicit usage of the elemental control
volume, which is not clearly defined and/or easily obtained in
particle-based methods. Indeed, it is generally meaningless to
talk about control volumes in the context of grid-free
computing. Third, with PSE it is necessary to "regrid" the
particles onto a uniform distribution once every few timesteps
to maintain its accuracy. This diminishes the appeal of vortex
methods as a "grid-free" tool with minimal numerical
diffusion, since regridding is associated with certain
complications for complex geometries, and the application of
traditional projection schemes [6] introduces numerical errors
back to the computations. A newly proposed projection scheme
based on radial basis functions holds strong promise for
maintaining accuracy, but it is presently quite costly [8].

The advanced algorithm described in this paper uses the
Vorticity Redistribution Method [9,10] (VRM) for predicting
diffusion, which provides a number of significant advantages.
First, the conservation properties of the diffusion equation are
preserved to arbitrarily high order [9,10]. Second, VRM does
not require frequent remeshing of the particles onto uniform
"grids" to maintain accuracy [11]. Third, VRM diffuses
circulation, not vorticity; therefore, it does not need control
volumes explicitly. Fourth, unlike other grid-free deterministic
diffusion solvers, VRM is capable of diffusing singular (not
smoothed) particles. This is quite significant because singular
particles represent the exact discrete solution of the vorticity
transport equations [12], and are thus ideal as DNS algorithms
[11]. In contrast, smoothed elements discretize the convolution
of the transport equations with the smoothing function and are,
therefore, of Large Eddy Simulation (LES) character [12].
Another significant advantage of VRM over other grid-free
methods is its ability to detect "holes" within the
neighborhood of a diffusing element, in which case a judicious
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filling of the holes with new elements leads to a guaranteed
stable solution. "Holes" are usually developed when severe
stretching of the vorticity field disperses the vortex elements,
and/or when the vorticity field front expands due to diffusion
[13].

In what follows, the algorithm for the present LVBEM is
described briefly. The accuracy of the latter is then
demonstrated using the benchmark problem of impulsively
started flow over a sphere at low Reynolds numbers.

NOMENCLATURE

Ai area of panel i
NP number of triangular panels

NV number of singular vortex particles

Nn number of particles in the neighborhood of a diffusing

particle
R radius of a sphere, centered on a diffusing particle,

where new particles are inserted due to diffusion
Re Reynolds number
ReD Reynolds number based on the diameter D
T non-dimensional period of a sinusoidal cycle

  

r 
U freestream velocity

f pq fraction of circulation given off from particle p  to

particle q  due to diffusion

  
r 
n unit normal vector pointing into the fluid domain
t time

  
r 
u velocity vector

  

r 
u smooth velocity vector, with smoothing core radius 

  

r 
u ,p smooth velocity vector at particle p

  
r 
x position vector
x, y,z components of position vector   

r 
x 

  

r 
x pq difference in position vectors of particles p  and q ,

  

r 
x p

r 
x q

Greek     letters   

  

r 
 gradient operator
t computational timestep

  

r 
 p vectorial circulation of particle p

computational fluid domain
bounding surface of fluid domain

.( ) Dirac Delta function

  

r 
 vortex sheet strength vector

  
r 
 vorticity vector

core radius of smoothing function

Subscripts   

p,q index to particles p  and q , respectively

FORMULATION

The 3-D vorticity transport equations are [2,6]:
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where the proper initial and boundary conditions (for velocity)
are applied to Eq. (1).

In the present algorithm vorticity is discretized using NV

singular vortex particles, each with "vectorial circulation" 
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The particle velocities (and their gradients) are smooth in
these computations and are evaluated by convolving the Biot-
Savart integral for velocities with a smoothing function:
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where g r( ) = 3 4( ) exp r 3( )  is the smoothing/core function

of choice in this paper. Note that the smooth velocity gradient
is obtained by differentiating Eq. (3) directly [2].

Given the above discretizations for vorticity and velocity,
the Lagrangian evolution of the vorticity field is evaluated via
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Note again that Eqs. (4a-c) represent the discrete solution
of Eqs. (1a-b), provided the velocity field in the former is
given by 

  

r 
u . Equations (4a-c) represent a viscous splitting

algorithm, whereby the convection and stretch of vorticity are
evaluated along particle trajectories, followed by the solution of
the diffusion equation in an Eulerian frame [14]. A second-
order predictor-corrector time integration is used for Eqs. (4a-
b).

The VRM solution of diffusion begins by assuming that
each particle p  gives off a fraction of its circulation to particle

q  in its neighborhood due to the diffusion process, such that
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r 
x p , t + t( ) =

r 
 p t( ) f pq

r 
x 

r 
x q( )

q=0

Nn

(5)

where q = 0  represents p  itself. Minimizing the residuals of

the zeroth through second moment integrals of Eq. (4c),
performing an Euler time integration, and substituting (5)
yields a system of 10 equations and Nn  unknowns for the

fractions [9,10,11]:
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The system of equations (6) is under-determined, which is
solved in the L -norm using linear programming [9,10,11]. If

the equations do not have a solution, new particles are inserted

on a sphere of radius R t Re  until a solution is obtained.

Stability analysis shows that R 6 ; in this paper we use

R = 8 . Note that this particle insertion and solution strategy

ensures that the nominal inter-particle spacing is R t Re( )
at all times and throughout the computational domain. The
radius of the sphere of influence containing the Nn  neighboring

particles; i.e., the stencil size, is set to 17 t Re . Note that

the stability of the smooth core functions requires that the core
radius  be larger than the inter-particle spacing. In this paper,

= 1.5R t Re  is used to guarantee stability.

The computational complexity of VRM is NV( ) . On the

other hand, the standard Biot-Savart evaluations are of NV
2( )

complexity, making the utility of 3-D vortex methods
impractical for most problems. To this end, an adaptive oct-tree

code with complexity NV logNV( )  has been implemented to

speed up the computations [15]. Further speedup is achieved
via efficient MPI-based parallelization of the velocity and VRM
evaluations for a distributed computing environment using the
standard Orthogonal Recursive Bisection (ORB) algorithm.

To satisfy the wall velocity boundary conditions, vortex
sheets are generated at the wall with their surface-tangent values

  

r 
  obtained subsequent to the solution of the following

Fredholm boundary integral equation of the second kind:
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The solution of Eq. (7) is obtained by discretizing the
surface of the object with NP  contiguous triangular panels and

assuming a shape function for   

r 
 . We have implemented a

collocation-based solution assuming a piecewise constant
distribution of   

r 
 , as well as a Petrov-Galerkin solution

assuming a singular particle distribution. The latter is presented
in this paper. Note that in the Petrov-Galerkin formulation, Eq.
(7) is integrated with respect to   

r 
x , yielding the following area-

integrated boundary element system:
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where 
  

r 
 i =

r 
 i Ai  on the surface is the "panel circulation" and is

equal to the particle circulation 
  

r 
 p  that is subsequently

diffused into the fluid domain. The surface integrals of the
velocity kernel are evaluated analytically [16] to get accurate
solutions in situations where the source and target points are
close to each other. Note that in Eq. (8b) the area-integrated
influence of the vortex particles is evaluated using the singular,
and not the smooth, velocity kernel to allow analytic
integration. Also note that Eq. (8) is easily extendible to the
case where the object experiences motion, including rotation,
which will be presented in a future publication.

The system of Eqs. (8) is densely populated and of NP
2( )

in terms of both storage and CPU requirements. To this end,
the adaptive oct-tree code for the particles is tailored to the case
with panels to reduce the memory and CPU cost of Eqs. (8) to

NP logNP( ) , which is then solved iteratively via GMRES.

The link between the vorticity generated at the wall and the
interior domain is accounted for via diffusion with either a
Neumann or a Dirichlet boundary condition. We have
experimented with the Dirichlet boundary condition as well as
the Neumann boundary condition used in [6,17] for flow over a
sphere and have found very little difference in the results. The
VRM formulation for the problem of wall-bounded diffusion in
a semi-infinite domain, conserving zeroth through second
moments, has been derived by our group. According to this
formulation, the vortex sheets retain a fraction of their strength
at the wall and give off the remainder to two "layers of
particles" adjacent to the wall, such that the moment conditions
are preserved. Note that since VRM can be used to diffuse
singular particles and sheets, difficulties encountered by other
methods, such as "loss of vorticity/circulation" due to the core
overlap of smooth vortex elements with the wall, are absent. In
this paper, a simple strategy is used, which conserves the
circulation and the first moment of diffusion from a wall with
Dirichlet boundary condition. To this end, at each timestep,
prior to solving Eq. (8) to satisfy the wall velocity boundary
condition, all vortex particles within a numerical boundary

layer of thickness R t Re  are removed. Then, having solved

Eq. (8), the circulation of each triangular panel is given all off
to a corresponding new particle, which is positioned in the
fluid along the normal passing through the panel centroid at an

elevation of h = 2 t Re( ) . This approach stabilizes the

simulation and inhibits the unnecessary growth of the number
of vortex elements that would otherwise be required if new
vortex particles were "injected" into the flow at every timestep.

The proposed LVBEM for each timestep is:

(1) For a given distribution of vortex particles, evaluate
the velocity field and its gradients via the adaptive
FMM implementation of Eq. (3).
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(2) Convect and stretch the vortex particles according to
(4a) and (4b), respectively.

(3) Repeat steps (1) and (2) to complete a second-order
time integration.

(4) Diffuse the vorticity field (modify particle circulation)
via VRM formulation, Eq. (6).

(5) Remove the particles within the numerical boundary

layer of thickness R t Re , as well as elements that

might have jumped out of the fluid domain.
(6) Impose the wall velocity boundary conditions by

solving Eq. (8) for the corresponding wall vortex sheet
vectors, using adaptive FMM.

(7) Insert new particles in the numerical boundary layer,

h = 2 t Re( )  away from the centroid of each

vortex panel.

RESULT S

The salient features of the proposed methodology are
presented in this section. To this end, we begin by showing

our FMM speedups, defined as the ratio of the N 2( )  CPU

time to that of FMM, for both vortex particles and panels.
Figure 1a depicts a comparison of our particle FMM speedups
with the speedup results by Strickland et al. (SE) [18] and
Warren & Salmon (WS) [19]. The test problem used - smooth
vortex particles distributed randomly in a cube with RMS-

error 10 4 - mimics that of SE as closely as possible. The
result by WS is for particles distributed on a spherical shell and
is used for qualitative comparison only. First thing to note is

that our FMM timing breaks even with the N 2( )  timing

(unity speedup) at roughly 500 particles. In contrast, the
breakeven points for SE and WS are at 70,000 and 20,000
particles, respectively. At 70,000 particles our FMM already

provides a nine-fold speedup. At 106 particles the speedup by
our FMM is 85, which is roughly 14 and 4 times higher than
the speedup reported by SE and WS, respectively. It should be
added here that the SE and WS computations involve particle
velocities only, whereas our computations include velocity
gradients as well, which increases the CPU time by about a
third. Also note that our FMM evaluations seem to asymptote

to N 1.1( )  beyond 600,000 particles. Figure 1b depicts a

comparison of our FMM speedup with that of Cheng et al.
(GR) [20], who are the leaders in the field. For this case, GR's
"black box" code was used on our computer for a more direct
comparison. The test used randomly distributed smooth vortex

elements in a cube. The RMS-error by our FMM was 3 10 4 ,

and it was 6 10 4 by the GR method. The breakeven point
was fewer than 500 particles for our FMM, and 5,000 particles
for GR's. In general, it can be claimed that our FMM is as
robust as that of GR. Note that the observed differences
between our results in Figs. 1a and 1b are due only to
differences in RMS-errors.

Figure 2 depicts the speedups obtained by our FMM-BEM
for a sphere and a cube. The open circles imply that the CPU
times for the classical/direct method were obtained by
extrapolation. The breakeven point for the two cases tested was
roughly 200 panels, and depending on the geometry, speedups

of 100( )  can be achieved for as few as 30,000 panels. It is

interesting to note that the largest number of panels one can use

to solve the 2NP 2NP( )  BEM problem by the classical

method is 5,590 on a computer with 1 GB of memory. In
contrast, we have successfully used FMM for up to 40,000
panels. We add here that we have implemented and tested
Gauss-Seidel, Jacobi and GMRES for iterating the matrix
solution to convergence, and we have found the CPU price-
performance of each to depend on the geometry and flow
conditions. For example, for the case of a cube, Gauss-Seidel
(and, equally, Jacobi with 0.8 under-relaxation factor) achieves
convergence roughly 30% faster than GMRES. However,
Gauss-Seidel becomes 25% slower than GMRES for ovoids
with high aspect ratio or other more complicated geometries.
We are currently using GMRES as the default.

Figure 3 depicts preliminary results for the parallelization
efficiency of the code on a cluster of four dual-processor AMD
Opteron 246 computers, which are inter-connected with gigabit
switches. Since the FMM component comprises over 90% of
the simulation cost, the figure essentially depicts the parallel

efficiency of the FMM. Efficiency is defined as T1 TPP( ) ,

Figure 1: FMM speedups by various authors
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where T1 is the time for a single-processor simulation and TP

is the time for the corresponding simulation using P
processors. Note that efficiency is better than 80% for 105

particles on 8 processors, and better than 90% for 106 particles.

On 4 processors, the efficiency is better than 90% even for 105

particles. The efficiency appears to be poor for 104 particles on
4 and 8 processors, and not too impressive even on 2
processors. This low efficiency at smaller number of particles is
somewhat irrelevant, especially when the wall clock time is
very small and since the number of computational elements in

practical simulations jumps to 105 within a few timesteps. The
more important property is the increase in the efficiency to over
90% with the increase in the number of particles.

A limited number of tests have been conducted using
external flow over a sphere to verify the robustness of the

proposed algorithm in the laminar flow regime. Flow over a
sphere is a particularly challenging canonical problem that can
clearly demonstrate the robustness of an algorithm, because it
undergoes various flow regime changes within a narrow range
of Reynolds numbers (such as steady axisymmetric flow,
steady non-axisymmetric flow, periodic flow, and others). To

date, we have completed flow simulations for up to
ReD = 100 , which is in the steady axisymmetric flow regime,

and have begun a simulation at ReD = 250 , which is a steady

but asymmetric flow. These flow regimes are difficult to
capture accurately with vortex methods, because unless the
diffusion solver is robust and can damp out the growth of
instabilities, the simulations may predict unphysical flow
unsteadiness and/or asymmetry.

For simulations at ReD 100 , a set of 1,280 triangular

panels is used to discretize the surface of the sphere, and the
computational timestep is set to t = 0.025 . Results with
t = 0.01  provided similar flow fields. To curb the linear

growth of the number of particles, the computational domain is
extended to at least four diameters downstream of the sphere;
beyond that point the particles are simply removed from the
calculation. Furthermore, the cutoff circulation below which

vorticity is not diffused is set to 
  

r 
 
cutoff

= 10 5.

Figure 4 depicts the separation angle (top), recirculation
bubble size (middle), and the coordinates of the bubble center
(bottom) as a function of the Reynolds number as predicted by
our method and by others. The results are in very good
agreement with predictions by finite difference [21,22] and
spectral element methods [23], as well as experimental data
[24,25]. Note that in this flow range, the simulations display
no unsteadiness and the flow remains axisymmetric for the
duration of the simulation, despite the fact that vortex particles
are distributed non-uniformly and that no particle remeshing is
used during the run. The flow axisymmetry essentially implies
that it is topologically a two dimensional problem and that the
growth of streamwise vortices due to vorticity stretch is
properly damped out by the diffusion process. This is a
welcome verification of the robustness of the various
components used in the current algorithm. In particular, it is
emphasized again that unlike the PSE-based simulation of flow
over a sphere [6], which requires remeshing once every few
(about five) timesteps to maintain solution accuracy, the current
VRM-based simulation uses no remeshing.

Simulation of flow over a sphere at ReD = 250 , which is

in the steady asymmetric regime, is in progress. For this case,
the spherical surface is discretized using 1,280 triangular
panels, and the timestep is set to t = 0.015 . The flow is
perturbed laterally (in the cross-stream direction) using one
sinusoidal cycle with non-dimensional period T = 1 and
amplitude equal to the freestream velocity. Figures 5a and 5b
represent a post-perturbation snapshot in time of the particle
positions in the planes of symmetry and perturbation,
respectively, color-coded with the strain rate. The simulation
has yet to reach steady state and the results are only meant to
demonstrate the salient features of the proposed method. Notice
first that the wake remains symmetric in the (so-called)
symmetry plane, the cross-stream plane that is orthogonal to
the plane of perturbation. However, it develops two counter-
rotating bubbles of unequal size in the perturbation plane; the
larger bubble being closer to the sphere, in agreement with

Figure 2: FMM speedup for vortex panels
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experimental evidence. The bubble size is roughly 30 percent
smaller than expected, which is not surprising since the flow
has not reached steady state yet. Figure 5 clearly shows how
vortex particles cluster themselves adaptively to regions with
significant vorticity and strain rate. Also notice that small
secondary vortices develop adjacent to the surface of the sphere

and immediately downstream of where the boundary layers
separate from the sphere.

It is worth mentioning here that we have actually tried
perturbing the flow for the ReD 100  cases, and have observed

that the flow returns back to its stable, symmetric condition.
Also, for the ReD = 250  case the perturbed flow returns to a

condition of full symmetry when relatively large timesteps
(e.g., t = 0.025 ) are used in the prediction. This makes sense
since, in an under-resolved simulation, using a large timestep
is roughly equivalent to assigning a small Reynolds number.

CONCLUSION

A hybrid Lagrangian Vortex-Boundary Element and
Vorticity Redistribution Method (VRM) is developed for the
grid-free simulation of 3-D incompressible flow about complex
objects. Computations are accelerated using a MPI-parallel
adaptive Fast Multipole Method (oct-tree code). In this paper,
the computational algorithm is described briefly, followed by a
demonstration of the CPU speed up obtained due to the
implementation of a MPI-parallel adaptive FMM (oct-tree
code). The results indicate that our implementation of FMM is
as good as or better than the results by other researchers in the
field. Finally, the first in a series of benchmark results is
presented using the example of flow over a sphere at low
Reynolds numbers. Very good agreement with other
simulations as well as experimental data is obtained for runs at
ReD 100  range. The predictions showed experimentally

observed steady flow symmetry, despite the fact that the
computational elements are distributed non-uniformly in the
fluid domain. This is the first ever long-time vortex-based
simulation in 3-D – with preliminary validation of results –
that confirms the claim that VRM facilitates truly grid-free
computations without having to resort to frequent remeshing.
Finally, initial results for the case of ReD = 250  indicate that

the proposed method appears to capture the physically observed
asymmetry of the flow. The latter is only qualitative in nature

Figure 4: Comparison of flow over a sphere

(a)

(b)

Figure 5: Side views of the strain rate field at
(a) plane of symmetry, and
(b) plane of perturbation
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at this stage, since the computations have not reached the
stationary state yet.
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