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ABSTRACT
In order to minimize the computational resources necessary

for a given level of accuracy in a Lagrangian Vortex Particle
Method, a novel particle core size adaptivity scheme has been
created. The method adapts locally to the solution while prevent-
ing large particle size gradients, and optionally adapts globally
to focus effort on important regions. It is implemented in the dif-
fusion solver, which uses the Vorticity Redistribution Method, by
allowing and accounting for variations in the core radius of par-
ticipating particles. We demonstrate the effectiveness of this new
method on the diffusion of a δ-function and impulsively started
flow over a circular cylinder at Re = 9,500. In each case, the
adaptive method provides solutions with marginal loss of accu-
racy but with substantially fewer computational elements.

NOMENCLATURE
C2 2nd moment of a distribution along the x- or y-axis.
D Diameter.
h Cell size.
hν Diffusion length scale.
Nv Number of vortex particles.
R Radius.
Re Reynolds number.
t Time.
tR Time non-dimensionalized by radius.
u Velocity vector.
U∞ Freestream velocity vector.
x Position vector.

Γ Circulation (ω dA in 2-D).
∆t Computational time step.
∆x Cell size or interparticle spacing.
ε Strength threshold, relative or absolute.
ν Kinematic viscosity.
σ Core radius of particle smoothing function.
ω Vorticity.

INTRODUCTION
Lagrangian Vortex Particle Methods (LVPM) are regularly

used to simulate highly-unsteady vortical flows, often with many
moving boundaries, and at high Reynolds numbers. As a con-
tinuous vorticity field must be represented by a finite number
of particles, and computational expense scales at best linearly
with the number of particles, methods to control the number of
computational elements are necessary for practical simulations.

Early LVPM implementations either disregarded diffusion
altogether, or treated it with random walk [1] or core-spreading
[2] methods, each of which did not require generation of new
particles. When Greengard [3] showed that core-spreading was
not convergent due to lack of deformation of large particles, Rossi
[4] resolved it by splitting large vortex blobs into many smaller
ones. Since then, more accurate and convergent methods to
account for diffusion emerged: the Particle Strength Exchange
(PSE) [5, 6] and Vorticity Redistribution Methods (VRM) [7],
both with the requirement that new particles be created at the
outer reaches of the vorticity support to accommodate accurate
diffusion.
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The most basic methods for reducing Nv involve shrinking
the vorticity-containing region. This is trivially accomplished by
removing any vortex particles that pass through a plane or move
far enough away from the study area to be considered irrelevant.
An issue that emerges is that the absence of vorticity on the other
side of this threshold makes the remaining vorticity “bounce” off
the interface. Our experience shows that this can be suppressed by
slowly weakening the particles as they pass through the threshold
before removing them. The detrimental effects of modifying the
vorticity can be controlled by simply moving this threshold farther
downstream.

Most current methods to reduce particle count involve reduc-
ing the number of particles necessary to represent a given parcel
of fluid; these involve merging, remeshing, and higher-order par-
ticles. Each of these methods is also able to accommodate the
solution by varying the resolution or particle density.

Through the action of convection particle distributions be-
come uneven and crowded. Merging (also called “lumping” or
“fusion”) aims to reduce the crowding by identifying pairs or
groups of nearby particles whose merging would least modify
the vorticity. Spalart [8] discusses using a combination of size
and strength as the merging criterion, and even suggests that
it could be made more aggressive far from regions of interest,
such as a far wake. Rossi [4] elaborates with a discussion of
the error involved in merging, and provides formulas for mini-
mizing errors in the first three moments. The author mentions
the use of r | |∇u| | as a metric for spatial adaptivity, but does not
demonstrate it. Dehnen [9], referring to astrophysical N-body
simulations, proposes to use the threshold for merging to enforce
pre-defined spatial adaptivity, allowing more aggressive merging
in areas with lower spatial gradients. More recently, Lakkis &
Ghoniem [10] conclude that merging of close particles can reduce
particle count with a minimal effect on accuracy.

Remeshing is designed to reduce the errors due to scattered
particle interpolation by generating new particles on a temporary
regular mesh to replace a previous set of scattered particles [11,
12]. An advantage of this method is that its regularity allows the
use of finite-difference methods to calculate diffusion. The grid
used for remeshing does not have to be uniform and regular, but
may use smoothly spatially-varying cell sizes, especially in the
far wake [13–15], and thus the remeshing step generates larger
particles in regions where the decrease in accuracy is deemed
allowable. But this requires a remapping of the distorted grid to
a uniform grid, which is typically predefined, and only globally
solution-adaptive.

Barba et al. [16] demonstrate remeshing using Radial Basis
Functions (RBFs) to be more accurate than regular-grid remesh-
ing, and effective on irregular particle distributions. RBFs can
theoretically remesh to any particle distribution, including one
with more target points in areas with higher gradients. Reboux
et al. [17] define methods for creating such a solution-adaptive
particle distribution, and rely on an RBF or similar method to

initialize a new set of particles from an old set.
Of course, remeshing may also be done with an adaptive-

mesh-refined (AMR) grid, which supports dynamic regions with
incremental-resolution (usually 2×) grids. Bergdorf et al. [18]
apply these methods to refine cells, but use only the lowest resolu-
tion data to advance the solution. In addition, the method imposes
a CFL-like condition on the time step to accommodate the algo-
rithmic growth of the domain at any given resolution. Rasmussen
et al. [19] present a hybrid Lagrangian-Eulerian Vortex-In-Cell
(VIC) method using an AMR grid instead of the traditional grid.
In VIC, a temporary grid is used only to accelerate calculation
of the velocity field, not to remesh particles. In this work, a
small number of large regions of the flow are tagged for refine-
ment, though regular grid calculations can proceed with greater
efficiency than scattered particle methods.

Finally, if particles are allowed to deform due to convection,
forming ovals or higher-order shapes, fewer particles should be
necessary to represent any given vorticity field, though other
portions of the LVPM, such as the Biot-Savart integration become
more difficult [20–23].

Relatively little work to date has demonstrated true, solution-
responsive particle size adaptivity. While the AMR regridding
of Bergdorf et al. [18] and the hybrid VIC work of Rasmussen et
al. [19] were successful, the zones of adaptivity were large and
strongly quantized (factors of 2 only). Lakkis & Ghoniem [10]
present a method most similar to ours, in that particles perform
core-spreading and/or VRM in order to achieve a desired particle
core size. It does not, though, provide for solution-responsive
adaptivity of particle core sizes, instead pre-defining the core
size as a function of location. In order to minimize error, core
sizes are quantized to σ2 = 4m ν∆t where m is an integer.

We propose a local (in time and space) and solution-adaptive
method for determining and maintaining particle sizes for the so-
lution of incompressible advection-diffusion problems. This is
accomplished with a combination of VRM, core-spreading, and
merging. Each particle’s strength (circulation in 2-D) serves as
the criterion for adaptivity, and a particle radius-gradient limiter
provides error control. The primary computational costs in the
present method are the Biot-Savart integrations (which are trivial
to parallelize) and the least-squares solutions to the VRM equa-
tions. As a result of these new methods, we have been able to
achieve significant improvements in speed or accuracy for several
canonical flow cases.

PROPOSED METHOD
The software uses a desingularized LVPM to discretize the

vorticity and an augmented Boundary Element Method (BEM)
to enforce boundary conditions. These methods are summarized
below, but extensive background [8, 24] and implementation-
specific details [25–27] can be found elsewhere.
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Lagrangian Vortex Particle Methods

The governing equations of incompressible fluid flow in
terms of the transport of vorticity are

∂ω

∂t
+u · ∇ω = ω · ∇u+

1
Re

∇2ω (1)

∇ ·u = 0 (2)
∇×u = ω (3)

supplemented with the appropriate velocity and vorticity bound-
ary conditions. In two dimensions, vorticity is a scalar and the
stretching term is identically zero. Specific details of the methods
and algorithms used presently appear in our previous work [27].

In the LVPM, the vorticity field is discretized using Nv

smooth vortex particles, assigned circulations Γ, and smooth
core radius σ. Viscous diffusion is evaluated using the Vor-
ticity Redistribution Method (see below). Velocities are com-
puted from the integration of the Biot-Savart equation over the
entire vorticity-containing region. A Boundary Element Method
serves to enforce boundary condition at walls, and explicitly gen-
erates vorticity on the fluid side of the boundary. Convection
is integrated using a second-order Runge-Kutta method. The
convection and diffusion functions operate within a 2nd order
operator-splitting scheme, in which one half step of diffusion is
followed by a full convection step and then another half step of
diffusion.

Vorticity Redistribution Method

The Vorticity Redistribution Method (VRM) [7,28] is a pow-
erful tool for calculating diffusion in a disordered collection of
particles because it satisfies moment conservation up to arbitrary
levels and automatically generates new particles where they are
needed. In its original form, every particle has uniform core
function and radius, simplifying the moment conservation equa-
tions that must be solved for the coefficients of strength exchange.
They do not depend on the core radius or core function (shape)
at all. This idea was later generalized to increase the accuracy
of the popular Particle-Strength Exchange (PSE) for calculating
diffusion among scattered particles [29].

In this and subsequent equations, we will consider only the
two-dimensional case, but the extension to three dimensions is
trivial. For a given particle at (xi,yi), all nearby particles’ posi-
tions (xj,yj) are transformed into a local frame around particle i

and scaled by the diffusion length scale hν .

x̃j =
xj − xi

hν
(4)

ỹj =
yj − yi

hν
(5)

hν =

√
∆t
Re

(6)

The following set of equations for the 0th to 2nd moments of
the distribution is then solved for the unknown fractions fj of
circulation that will be moved from particle i to particles j.∑

j

fj = 1 (7)∑
j

x̃j fj = 0 (8)∑
j

ỹj fj = 0 (9)∑
j

x̃2
j fj = 2 (10)∑

j

x̃j ỹj fj = 0 (11)∑
j

ỹ2
j fj = 2 (12)

If a solution does not exist, a new particle is placed in the vicinity
of particle i, at a specific distance δν , and in the largest "hole" in
the particle distribution, and the procedure is repeated.

The desired nominal separation between particles (used to
insert new particles in the above procedure) and the particles’
core radii are related to the diffusion length scale according to the
following relationships.

δν = Cδ hν particle nominal separation (13)
σ = Cσ δν particle core radius (14)

These constants can vary somewhat and VRM will still provide
a solution, with the constraint Cδ ≥

√
4. The two-dimensional

simulations below will use Cδ =
√

6 and Cσ = 2.0.
Additionally, a threshold circulation (ε) is typically defined,

below which a particle will not diffuse its strength to neighboring
particles. This serves to limit the endless growth of particles on
the fringes of the vorticity support. This threshold can be set to an
absolute value, or as a fraction of the circulation of the strongest
particle(s).

The above equations can be solved with the NNLS (non-
negative least squares) solver available in Eigen [30]. This solver
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will only distribute circulation to a number of neighbors equal
to the total number of moment equations (6 for 2nd moments in
2-D). Alternatively, these VRM equations can be solved with a
modified simplex solver [28, 31], which will distribute circula-
tions to potentially all participating particles. The performance
difference between these solvers is minimal.

Extension to Variable-Radius Particles
For uniform-radius particles, the VRM equations are writ-

ten as if each particle is a singular distribution (the moments
of the core function of each particle cancel). To allow solution
of the equations for particles with differing core radii, the mo-
ment conservation equations must be modified to account for the
moments of vorticity of the particles’ own cores. This modifi-
cation to the original VRM equations was introduced by Lakkis
& Ghoniem [32] in the context of axisymmetric diffusion. If we
define σi to be the radius of particle i at the beginning of the dif-
fusion step, and σ̃i its radius at the end of the step, we must then
solve the following set of equations for the unknown fractions fj
of circulation that will be moved from particle i to particles j.∑

j

fj = 1 (15)∑
j

x̃j fj = 0 (16)∑
j

ỹj fj = 0 (17)

∑
j

(
x̃2
j +C2

( σ̃j
hν

) 2
)

fj = 2+C2

(σi
hν

) 2
(18)∑

j

x̃j ỹj fj = 0 (19)

∑
j

(
ỹ2
j +C2

( σ̃j
hν

) 2
)

fj = 2+C2

(σi
hν

) 2
(20)

In these equations, C2 is the second moment of vorticity along
the x- or y-axis of a thick-cored particle whose radius is nor-
malized by hν , which for a true Gaussian is 0.5. Just as in the
uniform-core-size method, if a solution to these equations does
not exist, a new particle is place in the vicinity of particle i with
a post-step radius of σ̃i and the procedure is repeated. Note that
VRM allows solving to arbitrarily high moments [28], though
the present work limits the solution to 2nd moments. Lakkis &
Ghoniem [10] show increased error when VRM includes parti-
cles with core sizes different from the diffusing particle, so their
method specifically excludes those other particles from the above
calculation. But because particle core sizes in the present method
are not quantized at all, and grow under a particle radius gradient
constraint, neighboring particles have only slightly different radii,
and any additional error is limited.

Strength Thresholds
In the uniform-radius method, there must exist a threshold

circulation (ε) below which a particle will not shed circulation
to its neighbors. This limits the infinite geometric growth of the
particle distribution at the expense of accuracy at the edge of the
vorticity support. We keep this threshold in our adaptive-radius
method, but call it εignore. We introduce another threshold,
εadapt , which is the circulation magnitude above which the par-
ticle’s core radius will not grow (it will diffuse via pure VRM).
This leaves the range of circulations for which a particle will
perform VRM and possibly grow to εadapt > |Γ| > εignore. In
the adaptive-radius method, if |Γ | < εignore, the particle will not
perform VRM, but will be allowed to grow only up to a spe-
cific size. This introduces some inaccuracies again at the edge
of the vorticity support, but not as much as disallowing diffusion
altogether.

Selecting the Desired Radius
When solving the VRM equations, though, we must account

for the different radii of the participating particles, and to do this
correctly requires knowing the radii of all participating particles
before and after the diffusion step. Two criteria will determine
the desired particle sizes: the relative strength of the particle vs. a
threshold, and a limitation on the spatial gradient of particle core
sizes (called the lapse ratio). These criteria will determine how
much of the particle’s diffusion will be accounted for via a change
in size (growth or shrinking) and via sharing its strength with its
neighbors according to a solution to the VRM equations.

Our proposed spatially-adaptive VRM uses the following
procedure:

1. Compute post-step core radii for all particles; for each parti-
cle whose strength magnitude is below the adaptivity thresh-
old (εadapt ):

(a) Search nearby particles to find maximum size allowed
by radius lapse ratio

(b) Determine new size if all diffusion goes into core-
spreading

(c) Find minimum radius from these two calculations
(d) Set post-diffusion radius to be between this and the

current radius

2. Perform VRM, using pre- and post-step radii to adjust the
moment equations

3. Apply the strength and radius changes to all particles

The formulae for the desired new particle radius σ̃i , given
the radius lapse ratio Clapse and second moment coefficient C2,
are as follows:
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σi,lapse =min
[
σj +Clapse | | ®xi − ®xj | |2

]
j,i

(21)

σi,grow =
√
σ2
i +2 h2

ν/C2 (22)

σi,test =min
[
σi,lapse, σi,grow

]
(23)

σ̃i =

{
3σi+σi ,t est

4 , ifσi,test > σi
max[σi,test, 0.9σi], ifσi,test < σi

(24)

Note that because of the averaging of the old and ideal radii
the particles grow smoothly up to their desired radius, avoid-
ing excessive grow-then-shrink cycles. Also, unlike Lakkis &
Ghoniem [10], particle core sizes are not quantized and can take
any value at or above the limit imposed by the global time step
(σmin = Cσ Cδ

√
ν∆t). A final note is that the above method for

determining particle core size is not exclusive of other methods—
one can additionally allow particle sizes to increase linearly with
distance from the origin or from a solid body, as is done frequently
in the literature [10, 13, 15].

Avoiding Excessive Overlap
Convective accuracy in LVPMs is hindered by velocity errors

from excessive particle overlap [3] (and smoothness hindered by
insufficient overlap), and in an incompressible flow with time-
varying core radii, it is highly likely that particles will grow in
size and overlap more with their neighbors. The solution for this is
to merge neighboring particles while simultaneously conserving
the moments of the local vorticity field [8]. In the present method,
particles are allowed to merge if a measure of the relative error due
the proposed merge is below a threshold; and when they merge,
the 0th and 1st moments are conserved, and the new radius is set to
minimize the error in the 2nd moment, in a manner similar to [4].
Note that the combined action of growth and merging serves to
maintain approximately the same number of particles in each
particles’ radius-normalized neighborhood, a situation noted by
Dehnen [9] as minimizing the error in “softened” (desingularized)
N-body gravitational systems.

Implementation
The open-source Omega2D [33] solver was used as the driver

for the present method. This is an open-source, cross-platform,
C++11/14/17 program with a graphical user interface, for per-
forming LVPM simulations. All Biot-Savart summations in this
program use direct O (N2) summations, though algorithms with
lower order of operations [34,35] will be supported in the future.
Nevertheless, extensive performance optimization using multi-
threading and explicit vectorization [27] allow small simulations
to run at interactive rates. All tests below were performed on a
16-core AMD Ryzen 9 3950X workstation running Fedora Linux.

FIGURE 1. 2-D DIFFUSION PROBLEM, STEP 250, PARTICLE DIS-
TRIBUTIONS, UNIFORM, NV = 8,105 (LEFT), ADAPTIVE, NV =

2,458 (RIGHT).

VALIDATION
Two canonical flows were created and run with the present

method: pure diffusion of a δ-function and flow over an
impulsively-started circular cylinder. In each case, the results
indicate the method can significantly reduce the number of com-
putational elements necessary to represent the system without an
unreasonable loss of accuracy.

Point Diffusion
The simplest test, diffusion of a δ-function without convec-

tion, is an ideal test to compare uniform VRM with the proposed
adaptive method. The resulting field at time t is the well-known
Gaussian distribution.

ω(r) =
Γ

4πνt
e−

r2
4νt (25)

The system is initialized with ν = 1 and a single particle of strength
Γ = 1. Because the core function is a Gaussian with core radius
σ = 2

√
6ν∆t, the time is initialized to 6∆t instead of 0 to account

for diffusion of the δ-function. Relative thresholds for VRM are
εignore = 10−6 and εadapt = 10−3, and the adaptive case uses
Clapse = 0.1.

The above system was run with a variety of time step sizes
∆t, each corresponding to a different particle core size. Errors
in moment conservation were calculated for each run at t = 100,
with even moments normalized by the theoretical value, and odd
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FIGURE 2. 2-D HEAT PROBLEM, ν = 1, T = 100, MOMENT
CONSERVATION, UNIFORM (SOLID) AND ADAPTIVE (DASHED)
CASES.

moments by the square root of the product of the adjacent (even)
moments. Sample particle distributions (with point sizes scaled
by particle radius) appear in Fig. 1 for the 250th time step of
the ∆t = 0.1 case, where Nv = 8,105 for the uniform run and
Nv = 2,458 for the adaptive run. Numerical results in Fig. 2 indi-
cate that the 0th and 1st moments are resolved to approximately
machine precision (double-precision is used for these calcula-
tions), while 2nd moment is conserved to approximately εignore.
Notable is that the adaptive case exhibits lower second moment
errors than the uniform case—this is due to better resolution of the
outer reaches of the field by particles with larger radii. Despite
the VRM equations conserving up to only the second moment
explicitly, the third moment for both uniform and adaptive runs
decreases as resolution increases. Finally, the fourth moment for
the adaptive case appears to suffer near-constant error while the
uniform case shows a second-order convergence vs. h ∼

√
∆t.

Another test with ν = 10−3 and ∆t = 0.02 illuminates the
tradeoff between element count and pointwise error as a point
diffuses. The error is measured using an L2 pointwise norm,
h2
√∑

i(ωi −ω)
2, integrated over 40,000 points in a regular lattice

in the range ±8
√

4ν t and compared to the true solution. Results
for a uniform case and two adaptive cases, with Clapse = 0.05 and
Clapse = 0.1, appear in Fig. 3. The extra error associated with
the adaptive scheme is clear here, but it comes with a substantial
reduction in the number of particles necessary. With one-third
as many particles, the L2 error doubles, while an 80% reduction
in particles comes with a roughly 4-fold increase in error to
3.4×10−4. Further progression of these test cases in time would

FIGURE 3. 2-D HEAT PROBLEM, ν = 0.001, ∆T = 0.02, PARTICLE
COUNT AND L2 INTEGRATED ERROR, UNIFORM (SOLID) AND
ADAPTIVE (DASHED, DOTTED) CASES.

show improvement in the reduction of problem size with little
extra loss of accuracy. Figure 15 in Lakkis & Ghoniem [10]
shows that a case with two initial diffusing particles and variable-
core variable-spacing with redistribution with variable cores (the
most comparable to our method) achieves, after 500 steps, L2
error of 0.000365 with 7,500 particles (a single diffusing particle
could be assumed to require a little more than 3,750). Our method
with Clapse = 0.1 and larger∆t, after as many steps, demonstrates
L2 error of 0.000345 while using 3,110 particles.

Impulsively Started Cylinder at Re=9,500
Impulsively started flow over a circular cylinder is a well-

studied problem in two-dimensional fluid dynamics. At interme-
diate Reynolds numbers, capturing the vorticity field correctly
requires careful accounting of the vorticity creation at the bound-
ary, something that has been a challenge for traditional LVPMs.
Below we will demonstrate this canonical flow with ReD = 9,500,
study the influence of important parameters, and compare our re-
sults with previous computations [36–40].

This problem is frequently studied with LVPMs, most no-
tably with Koumoutsakos & Leonard [36] using a PSE scheme
for diffusion, Shankar [37] the same VRM as the present work,
and Wang [39] a diffusion-velocity approach. In a recent im-
plementation of the vortex penalization method [40], diffusion
was accomplished with finite differences on a high-resolution
regular grid. Our final comparison is with a spectral element
method solution by Kruse [38], results of which were gathered
from Shankar [37]. The studies by Lakkis & Ghoniem [10] and
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FIGURE 4. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, VORTICITY FIELD AT TR = 3, FROM
REFERENCES [36], [38], [37], AND PRESENT METHOD (TOP TO
BOTTOM).

Rasmussen et al. [19] exhibited results very similar to those of
Shankar [37] and the present method. Other notable studies of
this case [41, 42] did not present vorticity fields at the same time
steps as the above.

The cases presented below use D = 1, U∞ = 1, ReD = 9,500,
and were completed with our open-source Omega2D LVPM
solver. The Biot-Savart intgration uses the Vatistas n = 2 compact
core function [43], and the BEM uses constant-strength source

FIGURE 5. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, TR = {1,2,3}, X-VELOCITY ALONG
TRAILING CENTERLINE, FROM REFERENCES [38], [44], AND
PRESENT METHOD WITH ∆TR = 0.01.

and vortex panels. Following previous authors, time reported
in the figures is non-dimensionalized based on the cylinder ra-
dius, and most results will be reported at tR = 3 (tD = 1.5 if
non-dimensionalized by diameter). Each vorticity field in the fol-
lowing figures is made by performing a Biot-Savart integration
of the particles and panels onto an annular grid of 80×500 2nd
order quadrilateral elements in the range 1 ≤ r/R ≤ 1.6. The
simulation still proceeds in a Lagrangian manner—these Eule-
rian vorticity fields are for plotting only. With the exception of
Figure 4, subsequent vorticity plots are made in ParaView with
the “Cool to Warm (Extended)” palette and a range of ±80.

Figure 4 compares three previous methods to our results with
∆tR = 0.0025, εadapt = 10−2, εignore = 10−4, and Clapse = 0.15,
which at tR = 3 required 240,662 particles. Details in the vorticity
field downstream of the separation point are difficult to discern
from the older references, but all four methods seem to capture
the position and sizes of the secondary parcels of vorticity. The
most notable difference is in the thin region of positive vorticity
(red) immediately adjacent to the first primary shed vortex (blue),
the magnitude of which is not reported in the literature, though
the position is readily comparable. On this criterion, the present
results more closely resemble the earlier VRM calculations than
the spectral method. A second valuable comparison is the shape
of the first primary vortex, which seems more circular in the
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FIGURE 6. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, VORTICITY ALONG 45◦ LINE AT TR = 3,
FROM REFERENCES [38], [44], AND PRESENT METHOD WITH
∆TR = 0.0025.

spectral results, but appears more oval-like in the others. The
results of the adaptive-resolution VIC simulations of Rasmussen
et al. [19] are very similar to the present method, though using a
significantly smaller ∆tR = 10−4 and 2.228×106 cells.

In Fig. 5 we investigate the streamwise velocity along a line
emanating from the trailing stagnation node. Our medium resolu-
tion results (∆tR = 0.01) are compared with a high-order vorticity
solver [44] and to the spectral method of Kruse [38]. Even though
this plot is a close-up of the full set of data, the present method
is imperceptibly different from the high-order solver, and strays
only subtly from the spectral results.

Finally, we plot the vorticity at tR = 3 along a line emanating
45◦ from the trailing stagnation node, comparing our uniform and
adaptive high-resolution results (∆tR = 0.0025) to the high-order
vorticity-velocity results [44] in Fig. 6. This line was chosen
because it slices through a complex part of the near-body region
and also through the second, striated, positive vortex, revealing its
inner structure. The high-order method adequately resolves the
boundary layer, and shows negative vorticity immediately above
the body, while the present Lagrangian method does not (the
vorticity beneath the innermost layer of particles is in a bound
vortex sheet whose strength is found using BEM). The high-order
method also resolves the positive vorticity peak better than the two
particle methods. Both particle methods capture the key parts of

FIGURE 7. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, VORTICITY FIELD AT TR = 3, ∆TR =
0.01, ADAPTIVITY THRESHOLDS {εADAPT , εIGNORE } (TOP
ROW): {N.A.,10−5} (UNIFORM), {10−3,10−6}, (BOTTOM ROW):
{10−2,10−4}, {10−1,10−2}.

TABLE 1. PARAMETERS AND RESULTS FOR IMPULSIVELY-
STARTED CYLINDER SIMULATIONS, VARYING ADAPTIVITY
THRESHOLDS.

Parameter Uniform Adaptive

εadapt - 10−3 10−2 10−1

εignore 10−5 10−6 10−4 10−2

Nv 154,523 90,540 80,686 54,847

Time to tR = 3 16:29 11:20 9:57 7:19

the structure of the outer vortex, but the adaptive scheme exhibits
some overshoot in the weak laminae. Note that the high-order
simulation required 98,280 third-order elements and over a day
of computation, the uniform-core-size LVPM 598,073 particles
and over six hours, and the adaptive method 239,901 and under
three hours.

Effect of adaptivity thresholds To determine the in-
fluence of the adaptivity thresholds on the solution, three simula-
tions with different thresholds were run and the results compared
to the case with uniform particle size. Each simulation was run to
tR = 3 using ∆tR = 0.01 and a radius lapse rate of Clapse = 0.15.
Vorticity fields from these simulations appear in Fig. 7 and the
corresponding parameters (where they vary) in Table 1. While
subtle differences exist between the four cases, all appear to cap-
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FIGURE 8. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, VORTICITY FIELD AT TR = 3,∆TR = 0.01,
RADIUS LAPSE RATES (TOP ROW): 0 (UNIFORM), 0.1, (BOTTOM
ROW): 0.2, 0.4.

TABLE 2. PARAMETERS AND RESULTS FOR IMPULSIVELY-
STARTED CYLINDER SIMULATIONS, VARYING LAPSE RATES.

Parameter Uniform Adaptive

Clapse 0 0.1 0.2 0.4

Nv 154,523 87,049 77,469 74,637

Time to tR = 3 16:29 10:43 9:43 9:26

ture the oval-shaped primary vortex (blue), the striated secondary
coalescing vortex (blue), and the arrangement and size of the
small number of wall-bounded vortices. A noticeable difference
is the shape of the primary vortex, with the most aggressive level
of adaptivity (εadapt = 10−1) resulting in a more circular vortex
with noticeable striations. The performance data reveal that, even
at this early stage, the particle count and wall-clock time can be
cut in half with little effect on the vorticity.

Effect of radius lapse rate Recall that the radius lapse
rate Clapse is the maximum allowable change in particle radius
per unit distance between particles. Enforcing this puts a limit on
the range of particle radii that participate in any VRM solution.
Tests were run with ∆tR = 0.01, relative thresholds εignore =
10−4 and εadapt = 10−2, and varying Clapse from 0 (uniform)
to 0.4 (very aggressive). Vorticity fields for these simulations
appear in Fig. 8. One subtle but noticeable difference involves
the position of the thin wisp of positive vorticity (red) just below

FIGURE 9. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, VORTICITY FIELD AT TR = 3, VARYING
PARTICLE RESOLUTIONS (TOP ROW): ∆TR = 0.0025 UNIFORM
AND ADAPTIVE, (BOTTOM ROW): ∆TR = {0.01,0.04} ADAPTIVE.

TABLE 3. PARAMETERS AND RESULTS FOR IMPULSIVELY-
STARTED CYLINDER SIMULATIONS, VARYING PARTICLE RES-
OLUTION.

Parameter Low Medium High

∆tR 0.04 0.01 0.0025

∆x 0.003554 0.001777 0.000889

Nv uniform 40,611 154,523 598,073

Nv adaptive 26,502 80,686 239,901

Time to tR = 3, unif. 0:51.3 16:29 6:43:58

Time to tR = 3, adapt. 0:39.4 9:57 2:39:54

the first primary negative vortex (blue), which is smaller and
further rotated around the primary vortex when Clapse = 0.4,
more similar to the Shankar [37] results from Fig. 4, than of
present results with higher resolution. In addition, the Clapse =

0.4 case exhibits a smaller wall-bounded positive vortex (red)
than the other cases. Numerical results in Table 2 show little
difference between the Clapse = 0.2 and 0.4 cases, though that is
unlikely to be the case for longer runs with more diffused wakes.

Effect of particle resolution We finally examine the
effect of particle resolution on the results. Because interparti-
cle spacing varies with time step size as ∆x =

√
6ν∆tD , smaller

time steps require more particles and longer run time. Parame-
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FIGURE 10. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER WITH RED = 9,500, DISTRIBUTION OF PARTICLE CORE
RADII at TR = 3, ∆TR = 0.0025.

ters common to adaptive runs are εignore = 10−4, εadapt = 10−2,
and Clapse = 0.15, while the uniform resolution runs used
εignore = 10−5. Table 3 presents the varying parameters and
quantitative results, while vorticity fields at tR = 3 for select
runs appear in Fig. 9. Readily apparent is the unconverged low-
resolution result—the primary vortex is misshapen and its orbit-
ing red vortex patch is not elongated like the other results. As
particle resolution increases, though, the adaptive results quickly
approach the uniform high resolution case. By way of compari-
son, Lakkis & Ghoniem [10] achieve similarly good results with
their adaptive method using 200,000 particles with ∆tR = 0.01.

Figure 10 illustrates clearly that the present method adapts
the particle core sizes to the solution, as demanded by the adap-
tivity thresholds and the radius lapse rate. More and smaller
particles are used to resolve the vortices and boundary layer, and
fewer, larger particles the outer reaches of the vorticity.

CONCLUSIONS
A fully-local and solution-adaptive spatial adaptivity scheme

for Lagrangian Vortex Particle Methods requiring no a priori
knowledge of regions of interest and no regridding or remeshing
of any kind has been devised and tested. It effectively maintains
resolution near boundaries and in areas of high vorticity, while
reducing particle density in areas of lesser importance. The
performance benefits increase as resolution and simulation length
increase and the concept is extensible to three dimensions with
little extra effort.
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