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ABSTRACT
Hybrid Lagrangian-Eulerian solvers combine the convective

and compactness advantages of vortex methods with the spatial
anisotropy and boundary-resolving advantages of Eulerian meth-
ods to create flexible solvers capable of adequately capturing thin
boundary layers while still maintaining wake vortex coherency for
unsteady incompressible flow in complex geometries. The present
paper details a new hybrid method which combines, in one open-
source package, a novel, compact, high-order Eulerian scheme
for vorticity transport to predict the flow in the near-boundary
region with a grid-free, unremeshed, Lagrangian Vortex Particle
Method (LVPM) for the off-boundary vorticity-containing region.
This paper focuses on the hybridization of the two methods and
demonstrates its effectiveness on two canonical benchmarks: flow
in 2-D lid-driven cavity at Re= 1,000 and impulsively started flow
over a circular cylinder at Re = 9,500. In each case, the hybrid
method improves upon a pure LVPM and uses far fewer cells than
a purely Eulerian scheme. In addition, the size of the associated
Eulerian region is greatly reduced compared to previous hybrid
methods.

NOMENCLATURE
dwall Distance from a point to the nearest wall boundary.
dopen Distance from a point to the nearest open boundary.
d̂ Non-dimensionalized distance of a point from a wall to

an open boundary.
D Diameter.
h Cell size.

Nc Number of cells/elements.
Np Number of panels.
Nv Number of vortex particles.
R Radius.
Re Reynolds number.
t Time.
tR Time non-dimensionalized by radius.
n Surface normal vector.
u Velocity vector.
U∞ Freestream velocity vector.
x Position vector.
Γ Circulation (ω dA in 2-D).
∆t Computational time step.
∆x Cell size or interparticle spacing.
σ Core radius of particle smoothing function.
φg→p Grid-to-particle scalar field.
φp→g Particle-to-grid scalar field.
ω Vorticity vector.

INTRODUCTION
Lagrangian Vortex Particle Methods (LVPM) are well-suited

for simulation of unsteady vortex-dominated incompressible fluid
flow in the moderate Reynolds number regime, including tran-
sitional flow. Key advantages of LVPM are (1) near absence
of numerical diffusion, thanks to the Lagrangian accounting of
convection; (2) dynamic solution adaptivity resulting from the
inherent ability of vortex elements to automatically convect to-
ward regions with high vorticity strength; and (3) excellent ca-
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pacity for high-efficiency parallelization and vectorization due
to the high arithmetic intensity of the Biot-Savart formulation.
However, accurate and efficient treatment of the flow near the
boundary, which invariably requires the use of anisotropic vor-
tex elements, has remained mostly elusive to date. On the other
hand, compact high-order Eulerian CFD methods have recently
demonstrated excellent accuracy and computational efficiency on
canonical problems; however, they are rather challenging to apply
to problems that involve multiple bodies in relative motion, such
as those observed in many cardiovascular devices; and also have
not been extended to use velocity-vorticity variables.

To this end, leveraging the best attributes of these two very
diverse approaches, we demonstrate a new open-source hybrid
CFD solver, which combines a vorticity-based high-order Eule-
rian method for accurate prediction of the near-body flow with a
LVPM for off-body CFD to solve unsteady incompressible flow in
complex geometries. This paper focuses on the hybridization of
the Eulerian and Lagrangian solutions in a smooth and accurate
manner. An accompanying paper discusses the Eulerian solution
in more detail [1].

The earliest attempts at merging an Eulerian solver for the
boundary layer with an LVPM for the wake used non-overlapping
regions [2, 3]. Subsequent hybrid solvers [4, 5] introduced the
concept of using domain decomposition with overlapping to ease
the burden of matching flow properties at the interface. These
depended, though, on a costly iterative Schwarz method to refine
the solution of the boundary conditions. Daeninck [6] laid out
a hybrid method which removed this requirement and became
the basis for many subsequent techniques. In their method, a
2nd order velocity-vorticity solver resolves the near-wall region,
and the vorticity in the Eulerian region is interpolated onto parti-
cles. It was applied to several two-dimensional flows. A number
of coincident papers [7–9] follow the previous work into three
dimensions with minor differences. Because of their applica-
tion to problems in rotary-wing aerodynamics, many incorporate
a velocity-pressure Eulerian method, and the thickness of the
Eulerian regions are typically on the order of a chord length.
Oxley [10] and then Papadakis & Voutsinas [11] address com-
pressibility using a Lagrangian method which tracks dilatation,
though these still require a relatively large Eulerian region. Palha
et al. [12] provides a thorough overview of this history, and a hy-
brid method that, like previous authors, updates the Lagrangian
particle circulations on an intermediate regular grid.

In the proposed method, the computational domain for the
Eulerian solver covers only a layer above any wall boundaries, and
ends in an open boundary to the Lagrangian regime. Lagrangian
vortex particles exist within this domain and in the wake. In one
single outer time step, the LVPM marches ahead to provide the
velocity and vorticity boundary conditions on the open boundary
of the high-order mesh. The high-order Eulerian solver then
simulates that same outer time step over a larger number of inner
time steps, each involving solutions of convection, diffusion, and

a Poisson solution for the vorticity-velocity inversion. At the end
of those substeps, the vorticity in the Eulerian domain is used
to reset strengths on any co-located vortex particles. The vortex
particles then help reset any discontinuities in the vorticity in the
outer reaches of the Eulerian domain. In this manner, vorticity is
able to smoothly exit and enter the Eulerian domain while still far
more accurately modeling the high gradients expected near the
wall.

To study the performance and accuracy of the proposed
method, we simulated several canonical viscous flow problems
such as the 2-D lid-driven cavity at Re= 1,000 and an impulsively
started circular cylinder at Re = 9,500. The new method is shown
to be able to resolve near-wall regions that would have required
a far-more computationally-intense purely Lagrangian solution,
ensuring long-term accuracy of viscous vortical flows.

This paper details the first known hybridization of a high-
order Eulerian scheme for resolution of near-body regions with
a Lagrangian Vortex Particle Method for off-body regions. This,
combined with a new method to update strengths of the La-
grangian particles from the Eulerian solution, allows hybrid sim-
ulations to remain accurate with significantly smaller Eulerian
regions compared to previous work.

HYBRID METHOD
The software uses a desingularized LVPM to discretize the

vorticity and an augmented Boundary Element Method (BEM)
to enforce boundary conditions. These methods are summarized
below, but extensive background [4, 13] and implementation-
specific details [14, 15] can be found elsewhere.

Lagrangian Vortex Particle Method
The governing equations of incompressible fluid flow in

terms of the transport of vorticity are

∂ω

∂t
+u · ∇ω = ω · ∇u+

1
Re

∇2ω (1)

∇ ·u = 0 (2)
∇×u = ω (3)

supplemented with the appropriate velocity and vorticity bound-
ary conditions. In two dimensions, vorticity is a scalar and the
stretching term is identically zero. Specific details of the methods
and algorithms used presently appear in our previous work [16].

In the LVPM, the vorticity field is discretized using Nv

smooth vortex particles, each with constant core radius σ and
circulation Γi . Viscous diffusion is evaluated using the Vorticity
Redistribution Method (VRM) [17, 18]. VRM works by redis-
tributing the circulation Γi of each diffusing particle to neigh-
boring particles such that the moments of the diffusion equation
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are conserved up to arbitrary order, with new particles created
only if required to satisfy the moment equations. In this work we
conserve up to and including the 2nd moment. Additionally, in
order to prevent unbounded growth of Nv , VRM is applied only
to particles with circulation greater than a dynamic threshold, in
this case |Γi | > 10−5 |Γ |max. Note that VRM allows the present
method to avoid any ad-hoc regridding that is common in most
other vortex methods.

Velocities are computed from the integration of the Biot-
Savart equation over the entire vorticity-containing region. A
Boundary Element Method serves to enforce boundary condition
at walls, and unlike most other hybrid methods, explicitly gen-
erates vorticity on the fluid side of the boundary. Convection
is integrated using a second-order Runge-Kutta method. The
convection and diffusion functions operate within a 2nd order
operator-splitting scheme, in which one half step of diffusion is
followed by a full convection step and then another half step of
diffusion.

Eulerian High-Order Solver

Grids are created on solid boundaries and extend a limited
distance into the flow. A high-order, vorticity-based Eulerian
solver governs the flow in this regime. Vorticity transport in this
near-body subdomain is discretized via a newly developed com-
pact, high-order, discontinuous spectral difference method based
on the flux reconstruction method of Huynh [19, 20]. Details
of this new method are beyond the scope of this paper and are
presented in an accompanying work [1]. The geometric meshes
are generated using gmsh [21], and from those high-order quadri-
lateral elements the solution nodes are placed at Gauss-Lobatto
points in each dimension.

Each time step is advanced with a Runge-Kutta method (2nd
to 4th order), and each substep of those methods performs the
following operations.

1. Solve a Poisson problem for streamfunction and use the
gradients to determine the velocity. Wall boundaries use
a constant-valued Dirichlet boundary condition, and open
boundaries use the tangential velocity as a Neumann bound-
ary condition.

2. Compute velocity jump at the solid boundaries from the
above.

3. Compute diffused flux. Wall boundaries use a Neumann
boundary condition for vorticity to render the velocity jumps
null [1, 22], and open boundaries use vorticity as a Dirichlet
boundary condition.

4. Compute convected flux. All boundaries use vorticity times
the normal velocity as a Dirichlet boundary condition.

Hybridization
The Eulerian and Lagrangian regions are connected in a

manner similar to previous methods designed to avoid expensive
implicit iterations [6,7,12]. A Lagrangian Vortex Particle Method
solves for the flow properties in the entire fluid domain, from
the wall to infinity, while an Eulerian solver is only used for
near-body regions, and acts to correct the Lagrangian solution
near the body. As the Eulerian regime generally contains the
largest vorticity values and gradients, it operates with higher
spatial resolution and smaller time steps than the outer Lagrangian
regime, primarily dictated by convective and diffusive criteria for
computational stability. Thus, each Lagrangian (outer) time step
generally requires several Eulerian (inner) time steps.

The Lagrangian region affects the Eulerian region via two
mechanisms: setting boundary conditions on the Eulerian re-
gions’ open boundaries, and adjusting the vorticity in the outer
reaches of the Eulerian region. The latter is the particle-to-grid
feedback zone, defined by a constant scalar field φp→g evaluated
on every solution node in the Eulerian region at the beginning of
the calculation.

The Eulerian region affects the Lagrangian region via one
mechanism, acting at the end of each outer time step: adjust-
ing particle circulations within a band called the grid-to-particle
feedback zone (or “Lagrangian adjustment region”). This zone is
defined by a constant scalar field φg→p evaluated at every solution
node in the Eulerian region at the beginning of the calculation.

In all simulations presented herein, these scalar fields are
defined with the following functions of the normalized distance
of the solution node from the body to the open boundary (d̂),
though other functions may be similarly effective.

d̂ =
dwall

dwall + dopen
(4)

φp→g =

{
cos2(2πd̂) if d̂ > 0.75
0 otherwise

(5)

φg→p =

{
cos2(2πd̂) if 0.25 < d̂ < 0.75
0 otherwise

(6)

While Daeninck [6] allows adjustment of particle strengths
down to the wall, we experienced difficulties interpolating the
rather strong vorticity values present very close to the wall, and
thus our “Lagrangian adjustment region” operates on the middle
of the Eulerian region, similar to Palha et al. [12] and our previous
work [7]. A final note here is that the present method uses
a Boundary Element Method, and not the Eulerian region, to
satisfy the wall boundary conditions for the Lagrangian solver.

An outline of the hybrid method, which follows Daeninck [6],
Stock & Gharakhani [7], and Palha et al. [12], appears below.
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1. At time t the solution is known in both the Eulerian and
Lagrangian regimes, though it is assumed that the Lagrangian
solution is less accurate near the wall.

2. The complete Lagrangian system advances one full (outer)
time step.

3. A set of data is passed from the Lagrangian to the Eulerian
solver, containing:

• Velocity and vorticity on the open boundary nodes of
the Eulerian regime at the beginning and ending of the
outer time step, as calculated by the Lagrangian solver;
• Vorticity and particle-to-grid weights at all solution
nodes of the Eulerian regime at the beginning and end-
ing of the outer time step, as calculated by the La-
grangian solver.

4. The Eulerian solver advances a number of (inner) time steps,
each time step involving:

(a) Setting the open boundary conditions using velocities
and vorticities from the Lagrangian solution, linearly
interpolated in time for the given step and integrator
sub-step;

(b) Performing the Runge-Kutta integration to advance the
Eulerian vorticity transport equations; and

(c) Using the particle-to-grid weights and the Lagrangian
vorticity, linearly interpolated in time, to nudge the
vorticity in the Eulerian regime near the open boundary.

5. In the grid-to-particle overlap region, the vorticity from the
Eulerian solution is transmitted to the Lagrangian solution in
a manner similar to Beale [23]. This consists of the following
steps:

(a) The vorticity deficit is calculated on each Eulerian solu-
tion node using vorticity from each of the two regimes;

(b) This is then scaled by the area of the solution node and
then again by the weight from the grid-to-particle field;

(c) New Lagrangian particles are created at the centers of
the solution nodes, using this scaled circulation, only
if that circulation is above a threshold;

(d) These particles are merged with the underlying La-
grangian vortex particles;

(e) The vorticity on the Eulerian solution nodes is then re-
calculated from the Lagrangian vortex particles, and a
new vorticity deficit is calculated; and

(f) The above process is repeated up to 10 times, or until
the relative magnitude of the vorticity deficit is below
10−4.

6. The solution at t+∆t is now current in both the Eulerian and
Lagrangian regimes.

The grid-to-particle update (step 5 above) is the main dif-
ference between the present and previous hybrid methods. The
implementation used herein is relatively costly but can be im-
proved with a least-squares matrix solution for the circulation

change required to best match the Eulerian vorticity. This is a
goal of subsequent research.

Implementation
The open-source Omega2D [16, 24] solver was used as the

driver for the present method. This is an open-source, cross-
platform, C++11/14/17 program with a graphical user interface,
and in this work it performed the Lagrangian (particle) simulation
and hybridization portions of the solution, but not the Eulerian
solution. All Biot-Savart summations in this program use the
Vatistas n = 2 core function [25] and direct O (N2) summations,
though algorithms with lower order of operations exist [26, 27]
and may be implemented in the future. Nevertheless, extensive
performance optimization using multithreading and explicit vec-
torization allow simulations to run at interactive rates.

The driver program can link to any Eulerian solver which
exposes the appropriate calls, which itself can use one of a variety
of matrix solvers. All results herein used a Fortran 90 Eulerian
solver developed under the same grant, though a C++ solver is
expected to be integrated into the package. Additionally, matrix
solutions were performed by a proprietary multi-threaded solver
called APLLES, though AMGCL [28] is also effective.

All tests below were performed on an 8-core Intel i7-5960X
running Fedora Linux.

VALIDATION
Two canonical flows were created and run with our open-

source Omega2D LVPM solver: a lid-driven cavity and flow over
an impulsively-started circular cylinder. In each case, the results
compare favorably with prior art.

Lid Driven Cavity in 2-D
A canonical test of internal flow is the lid driven cavity, which

has well-known solutions at many Reynolds numbers. In this flow,
a closed, unit square box with fluid initially at rest is driven by
tangential motion of the top lid at unit speed to the right. Previous
results from Ghia et al. [29] for the steady-state Re = 1,000 case
were performed with a uniform 129×129 point finite difference
grid and solved with multigrid relaxation. Subsequently, Erturk
et al. [30] refined those results for a wide range of high Reynolds
numbers, using 601×601 points on the finest grid and performing
Richardson extrapolation to estimate the solutions.

Simulations were made at multiple resolutions (∆tpart =
0.04,0.01,0.0025), with both pure Lagrangian and hybrid
Lagrangian-Eulerian methods, with the Eulerian regions com-
posed of only 3rd-order square elements extending 0.1L from the
walls. Note that for the lowest-resolution case, this resulted in a
layer only three cells thick. Nominal particle separation was set to
∆xpart =

√
6∆tpart/Re, and overlap ratio was 2. All simulations
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FIGURE 1. 2-D DRIVEN CAVITY, RE=1,000, VORTICITY AT T =
75, CONTOURS AT ±{0.5,1.5,2.5,3.5,4.5}; LEFT: PARTICLE ONLY,
RIGHT: HYBRID, TOP TO BOTTOM: ∆TP = {0.04,0.01,0.0025}.

used VRM diffusion with a relative particle strength threshold of
10−5.

Figure 1 shows the vorticity fields for several of these runs.
Clear from this figure is that the particle-only runs underestimate
vorticity at the wall, while the lowest resolution hybrid case over-
estimates it (likely due to the very thin and active grid-to-particle
overlap region). Table 1 shows runtime parameters and selected
results for our hybrid simulations and those of Erturk et al. [30].
Because of the relationship in the present method between ∆t and
∆x, the number of particles increases by four-fold as the time
step is reduced by a similar factor. As the present method is
intrinsically dynamic, each simulation was run to t = 75, though
the flow continued to evolve, albeit subtly, afterward. We esti-
mate the error due to stopping the simulations early to be roughly
≈ 0.1%. As resolution increases, the results converge to the solu-

TABLE 1. PARAMETERS AND RESULTS FOR LID DRIVEN CAV-
ITY SIMULATIONS AT THREE RESOLUTIONS.

Parameter Erturk et al. Present Method

∆tgrid ∞ 0.004 0.001 0.00025

∆xgrid 0.0016̄ 0.03̄ 0.02 0.01

Ngrid 361,201 324 900 3,600

∆tpart - 0.04 0.01 0.0025

∆xpart - 0.01549 0.00775 0.00387

ux,y=0.18 -0.3869 -0.3659 -0.3792 -0.3847

ux,y=0.94 0.4276 0.3901 0.4177 0.4251

uy,x=0.15 0.3756 0.3676 0.3665 0.3732

uy,x=0.91 -0.5263 -0.5216 -0.5169 -0.5241

FIGURE 2. 2-D DRIVEN CAVITY, RE=1,000, VERTICAL VELOC-
ITY ALONG HORIZONTAL CENTERLINE, HORIZONTAL VE-
LOCITY ALONG VERTICAL CENTERLINE.

tion from Erturk et al. [30] at roughly 2nd order. Finally, Figure
2 contains plots of the velocities along centerlines through the
cavity. The results for the two highest resolution cases appear to
overlap with the results of Ghia et al. [29], which at this scale are
indistinguishable from Erturk et al. [30].
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Impulsively Started Cylinder
Impulsively started flow over a circular cylinder is a well-

studied problem in two-dimensional fluid dynamics. At interme-
diate Reynolds numbers, capturing the vorticity field correctly
requires careful accounting of the vorticity creation at the bound-
ary, something that has been a challenge for traditional LVPMs.
Below we will demonstrate this canonical flow with ReD = 9,500,
study the influence of important parameters, and compare our re-
sults with previous computations [31–35].

Many computations were performed with purely LVPMs,
with Koumoutsakos & Leonard [31] using a particle-strength
exchange scheme for diffusion, Shankar [32] the same VRM as
the present work, and Wang [34] a diffusion-velocity approach. In
a recent implementation of the vortex penalization method [35],
diffusion was accomplished with finite differences on a high-
resolution regular grid. The final comparison is with a spectral
element method solution by Kruse [33], results of which were
gathered from Shankar [32]. Other notable studies of this case
[36, 37] did not present vorticity fields at the same time steps as
the above.

The cases presented below use D = 1, U∞ = 1, and ReD =
9,500, Nominal particle separation was set to ∆x =

√
6∆tD/Re,

overlap ratio was 2, and the cutoff for VRM diffusion was a
particle strength magnitude of 10−5 relative to the strongest par-
ticle. The Eulerian grids consisted of 3rd-order geometric el-
ements, each turned into a 3rd-order computational element by
the high-order solver. Following previous authors, time reported
in the figures is non-dimensionalized based on the cylinder ra-
dius, and most results will be reported at tR = 3 (tD = 1.5 if
non-dimensionalized by diameter). Vorticity fields appearing in
the following figures contain the complete Eulerian region (up
to and including the outer-most row of elements). Outside of
the Eulerian region the vorticity is the Lagrangian solution after
projecting to an annular grid of 80×500 2nd-order quadrilateral
elements in the range 1 ≤ r/R ≤ 1.6. The plots are made in Par-
aView with the “Cool to Warm (Extended)” palette and a vorticity
range of ±80.

Figure 3 shows our results next to those of the above refer-
ences. This specific run used∆tR = 0.0025, 12 Eulerian substeps,
and an Eulerian region extending only to r/R = 1.05. Details in
the vorticity field downstream of the separation point are difficult
to discern from the older references, but all four methods seem to
capture the position and sizes of the secondary parcels of vortic-
ity. The most notable difference is in the thin region of positive
vorticity (red) immediately adjacent to the first primary shed vor-
tex (blue), the magnitude of which is not reported in the literature,
though the position is readily comparable. On this criterion, the
present results more closely resemble the earlier VRM calcula-
tions than the spectral method. A second valuable comparison is
the shape of the first primary vortex (blue), which seems more
circular in the spectral results, but appears more oval-like in the
others.

FIGURE 3. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER, RED = 9,500, TR = 3, FROM REFERENCES [31], [33], [32],
AND PRESENT METHOD (TOP TO BOTTOM).

Effect of element order To determine the influence of
Eulerian element order on the solution, we generated four dif-
ferent annular meshes of 3rd-order quadrilateral elements (four
nodes on each edge) with gmsh such that simulations with 2nd- to
4th-order solution elements would have an equal number of de-
grees of freedom (41,472). The meshes extended R ≤ r ≤ 1.1 R
and contained roughly square quadrilateral elements. Each sim-
ulation was run to tR = 3 for purposes of plotting, and to tR = 2
for timing.
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FIGURE 4. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER, RED = 9,500, TR = 3, ∆TR = 0.01, EULERIAN MESH TO 1.1R,
ELEMENT ORDERS 2, 3, 4 (TOP TO BOTTOM).

Vorticity fields from these simulations appear in Fig. 4 and
the corresponding parameters in Table 2. Of particular note is
that the thickness of the innermost computational elements for
the 4th-order case have h = 0.008, which is approximately the
boundary layer thickness. Visually, the positions and shapes of
the two primary negative vortices (blue) constitute the primary
difference between the results of orders 2 and 3. Only extremely
subtle differences exist when the order of the Eulerian elements
is increased to 4. The performance data in Table 2 reveal that
the convergence provided by the higher-order meshes come with
little additional computational cost. Note that the case with 1st
order elements is not presented here, as it was wildly inaccurate.

Effect of size of Eulerian region Clearly, if a hybrid
method requires very thick regions above each wall for accuracy,
it would amount to little more than a novel boundary condition
for the underlying Eulerian solver. Thus, we studied the influence
of the size of the Eulerian solution domain on the results, solving
the above problem with four different meshes with 1 ≤ r/R ≤

{1.05,1.1,1.2,1.5} each with average cell sizes of 0.004, 780 cells

TABLE 2. PARAMETERS AND RESULTS FOR IMPULSIVELY-
STARTED CYLINDER SIMULATIONS.

Grid Order No Grid 2 3 4

Grid ∆tR - 0.001 0.001 0.001

Grid ∆x - ≈0.004 ≈0.006 ≈0.008

Grid cells - 12×864 8×576 6×432

Particle ∆tR 0.01 0.01 0.01 0.01

Particle ∆x 0.00178 0.00178 0.00178 0.00178

Np at tR = 3 153,894 146,786 150,773 151,770

Time to tR = 2 20:05 63:58 66:41 74:05

around the circumference, and {7,12,23,49} cells radially. The
Lagrangian particle regime used ∆tR = 0.005, and the Eulerian
regime used 3rd-order solution elements and twelve 4th-order
Runge-Kutta substeps per outer time step.

Vorticity fields of the upper half for these cases appears in
Fig. 5. The method has no problem maintaing smooth vorticity
across the outer boundary of the Eulerian grid (marked as a thin
black line). Similar to the above cases, we see subtle differences
in the position and shape of the thin wisp of positive vorticity
(red) just below the first primary negative vortex (blue). In the
case with the widest Eulerian region, this small patch is thinner
and elongated and shifted closer to the body, reminiscent of the
Shankar [32] results from Fig. 3, and of the results below with
higher particle resolution. A final note is that, even though all
cases finished with roughly the same number of vortex parti-
cles (about 294,000), the cases with larger mesh volumes, and
thus more elements, required commensurately greater wall-clock
times to complete.

Very few other differences appear in these results, leading us
to conclude that slim body-fitted meshes can accomodate accurate
solutions, so long as both regions are fully resolved. Compar-
atively, no other author has demonstrated Eulerian regions this
thin. Cottet & Koumoutsakos [4] used 2R for a ReD = 550 cylin-
der, and Palha et al. [12] used 1.5R for the same. Daeninck [6]
uses about 1.55R for a ReD = 3,000 cylinder.

Effect of particle resolution While the above test cases
using the proposed hybrid method involved Eulerian solution
node separation distances similar to the nominal particle sepa-
ration in the LVPM, because much of the evolution of the wake
occurs in the purely-Lagrangian regime, we now examine the
effect of particle resolution on the results.

Time steps for the four Lagrangian particle res-
olutions tested are ∆tR = {0.02,0.01,0.005,0.0025}, cor-
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FIGURE 5. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER, RED = 9,500, TR = 3, ∆TR = 0.005, EULERIAN MESH OUTER
EXTENTS 1.05 R, 1.1 R, 1.2 R, 1.5 R (TOP TO BOTTOM).

responding to nominal particle separation distances of
{0.00251,0.00178,0.00126,0.000889}. In all cases, the Eule-
rian regime uses 7× 780 3rd-order quad cells, with h ≈ 0.004,
extending to r/R = 1.05, and twelve 4th-order Runge-Kutta sub-
steps per outer time step (except for the lowest particle resolu-
tion, which required 25 substeps for stability). Each simulation
was run to tR = 3, with the vorticity field plotted on a grid of
2nd-order quads, and the Eulerian vorticity plotted over it using
its original elements’ geometry. These results appear in Fig. 6.
Readily apparent is the convergence of the results as particle
resolution increases: both the thin positive wisp (red) and the
pair of positively-signed body-local discrete secondary vortices
approach the high-order Eulerian r/R = 1.5 solution from Fig. 5.

FIGURE 6. 2-D FLOW OVER IMPULSIVELY STARTED CYLIN-
DER, RED = 9,500, TR = 3, EULERIAN MESH TO 1.05R, VARY-
ING VORTEX PARTICLE SIZE AND TIME STEP SIZE, ∆TR =
0.02,0.01,0.005,0.0025 (TOP TO BOTTOM).

Effects of other parameters Other parameter studies
showed little effect on final results; those include: varying the
number of iterations in the grid-to-particle overlap update, widen-
ing or moving the center of the overlap regions (within limits),
varying the order of the substep time stepping (1 was poor, 2-4
were fine), varying the number of substeps in the Eulerian update
step (as long as it was stable).

CONCLUSIONS
We have presented a two-dimensional, open-source, hybrid

computational fluid dynamics tool for accurate simulation of un-
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steady internal and external flows. The software includes a novel
High-Order Eulerian scheme for near-body vorticity generation
while retaining the LVPM for wake convection. The combination
of high order Eulerian elements and the new hybrid scheme al-
lows much thinner and less computationally-intense grid regions
around wall boundaries. The method has demonstrated accuracy
on both a lid-driven cavity and an impulsively-started cylinder
flow compared to previous spectral and high-resolution results.
Future work will refine the concepts herein and apply them to
three-dimensional flows.
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