Solution-Responsive Particle Size Adaptivity in Lagrangian Vortex Particle Methods

FEDSM2021-65621
Mark J. Stock
Adrin Gharakhani
Applied Scientific Research, Inc.

- Adaptivity and Diffusion in Particle Methods
- Overview of Vorticity Redistribution Method (VRM)
- Adaptive VRM
- Diffusion of a Point Vortex
- Re=9500 Cylinder
- Parameter Effects

Adaptivity in Particle Methods

- Naturally adaptive (particles only where vorticity)
- Cutoffs (distance or strength) [various]
- Merging/lumping [Spalart, Rossi]
- Regridding to AMR [Bergdorf et al., Rasmussen et al.]
- Replacement onto alternative set [Reboux et al.]
- Higher-order shapes [Teng, Rossi, Häcki]

Diffusion in Particle Methods

- Random Walk [Chorin]
- Core-spreading [Kuwahara \& Takami, Rossi]
- Particle Strength Exchange [Mas-Gallic]
- Vorticity Redistribution Method [Shankar \& van Dommelen]
- Radial Basis Functions [Barba et al.]
- Finite-Difference after Regridding [Cottet]

Vorticity Redistribution Method

- Solve under-determined equations for fractions of circulation to contribute to neighbors (f_{i})
- Add new neighbors if no solution is available

$$
\begin{array}{lrl}
\tilde{x}_{j}=\frac{x_{j}-x_{i}}{h_{v}} & \sum_{j} f_{j}=1 & \sum_{j} \tilde{x}_{j}^{2} f_{j}=2 \\
\tilde{y}_{j}=\frac{y_{j}-y_{i}}{h_{v}} & \sum_{j} \tilde{x}_{j} f_{j}=0 & \sum_{j} \tilde{x}_{j} \tilde{y}_{j} f_{j}=0 \\
h_{v}=\sqrt{\frac{\Delta t}{\operatorname{Re}}} & \sum_{j} \tilde{y}_{j} f_{j}=0 & \sum_{j} \tilde{y}_{j}^{2} f_{j}=2
\end{array}
$$

Adaptive VRM

- Second moment conservation must account for core radius (σ) at start and end of diffusion step

$$
\begin{gathered}
\sum_{j}\left(\tilde{x}_{j}^{2}+C_{2}\left(\frac{\tilde{\sigma}_{j}}{h_{v}}\right)^{2}\right) f_{j}=2+C_{2}\left(\frac{\sigma_{i}}{h_{v}}\right)^{2} \\
\sum_{j} \tilde{x}_{j} \tilde{y}_{j} f_{j}=0 \\
\sum_{j}\left(\tilde{y}_{j}^{2}+C_{2}\left(\frac{\tilde{\sigma}_{j}}{h_{v}}\right)^{2}\right) f_{j}=2+C_{2}\left(\frac{\sigma_{i}}{h_{v}}\right)^{2}
\end{gathered}
$$

Adaptive VRM, Continued

- How to set new particle sizes/radii (σ)?
- Adapt and diffuse thresholds, and their metric
- Metric is particle circulation*
- If metric is above adapt threshold, allow constant-radius VRM
- If metric is below adapt threshold, allow growth+VRM
- If metric is below diffuse threshold, allow only growth
- Radius lapse rate ($C_{\text {lapse }}$)
- Limits growth to a given spatial gradient of core radius

Adaptive VRM, Continued

- Calculation of new particle core sizes (σ_{i})

$$
\begin{aligned}
\sigma_{i, \text { lapse }} & =\min \left[\sigma_{j}+C_{\text {lapse }}\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}\right]_{j \neq i} \\
\sigma_{i, \text { grow }} & =\sqrt{\sigma_{i}^{2}+2 h_{v}^{2} / C_{2}} \\
\sigma_{i, \text { test }} & =\min \left[\sigma_{i, \text { lapse }}, \sigma_{i, \text { grow }}\right] \\
\tilde{\sigma}_{i} & = \begin{cases}\frac{3 \sigma_{i}+\sigma_{i, \text { test }}}{4}, & \text { if } \sigma_{i, \text { test }}>\sigma_{i} \\
\max \left[\sigma_{i, \text { test }}, 0.9 \sigma_{i}\right], & \text { if } \sigma_{i, \text { test }}<\sigma_{i}\end{cases}
\end{aligned}
$$

Point Diffusion

- Diffusion only, no convection
- 250 Steps of VRM
- No adaptivity: $\mathrm{N}_{\mathrm{v}}=8,105$
- With adapt threshold 10-3, diffuse threshold 10-6, and lapse rate $0.1, \mathrm{~N}_{\mathrm{v}}=2,458$

Point Diffusion, Continued

- Unit-strength point vortex, unit diffusivity
- Conserve moments [0..2]
- Run to $\mathrm{t}=100$
- Compare errors vs. theoretical moments

Point Diffusion, Continued

- $\operatorname{Re}=1000, \Delta t=0.02$
- Pointwise L_{2} error vs. time
- Demonstrates trade-off between adaptivity and accuracy

Re=9500 Cylinder

ASME' 2021 FEDSM

$t_{R}=3$
Present (adaptive VRM)

Re=9500 Cylinder Results

ASME: 2021 FEDSM

Re=9500 Cylinder Results

ASME' 2021
 FEDSM

Effect of Adaptivity Threshold

- Radius lapse rate $=0.15$
- $\mathrm{N}_{\mathrm{v}}=155 \mathrm{k}, 91 \mathrm{k}, 81 \mathrm{k}, 55 \mathrm{k}$

Effect of Radius Lapse Rate

ASME゚ 2021 FEDSM

- Vorticity at $\mathrm{t}_{\mathrm{R}}=3, \Delta \mathrm{t}_{\mathrm{R}}=0.01$
- 10-2 adapt, 10-4 diffuse
- $\mathrm{N}_{\mathrm{v}}=155 \mathrm{k}, 87 \mathrm{k}, 77 \mathrm{k}, 75 \mathrm{k}$

- Vorticity at $t_{R}=3, \Delta t_{R}=0.0025,0.0025,0.01,0.04$
- 10-2 adapt, 10-4 diffuse, lapse rate $=0.15$
- $N_{v}=598 k, 240 k, 81 k, 27 k$

Re=9500 Cylinder

ASME' 2021
 FEDSM

Re=300 Tandem Cylinders

ASMĖ 2021 FEDSM

- True solution adaptivity with no a priori guidance
- Particles can take any radius (not quantized)
- 2-D version offers 50-75\% reduction of N_{v}
- Small overhead is far outweighed by lower N_{v}
- Still works with global spatial adaptivity schemes
-3-D tests show even larger reduction of N_{v}
- Investigate new adaptivity metrics (shear rate)
- Apply to Hybrid HO Eulerian-Lagrangian Method
-3-D tests show even larger reduction of N_{v}
- Investigate new adaptivity metrics (shear rate)
- Apply to Hybrid HO Eulerian-Lagrangian Method

Acknowledgements

- Research supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R01EB022180.

Solution-Responsive Particle Size Adaptivity in Lagrangian Vortex Particle Methods

FEDSM2021-65621
Mark J. Stock
Adrin Gharakhani
Applied Scientific Research, Inc.

