

ASME[®] 2021 FEDSM Fluids Engineering Division Summer Meeting

VIRTUAL CONFERENCE AUGUST 10–12, 2021

A Hybrid High-Order Vorticity-Based Eulerian and Lagrangian Vortex Particle Method, the 2-D Case

FEDSM2021-65637

Mark J. Stock Adrin Gharakhani Applied Scientific Research, Inc.

- Lagrangian Vortex Particle Method
- Vorticity-based High Order Eulerian method
- Hybridization
- Re=1000 Lid-driven cavity
- Re=9500 Cylinder
- Parameter effects

Lagrangian Vortex Particle Methods

- Discretize vorticity onto radially-symmetric particles; scalar circulation in 2-D, vector strength in 3-D
- Solve vorticity equation in Lagrangian sense
- Biot-Savart or Particle-Grid methods for Velocity
- Boundary Element Methods solve for unknown singularity distributions on solid boundaries

ASME[®] 2021

High-Order Eulerian Method

- Compact, high-order, discontinuous spectral difference method based on Huynh's flux reconstruction [2007,9]
- Vorticity-streamfunction variables
- Quad elements with geometry order $1 \rightarrow 3$, solution discretization order $1 \rightarrow 4$
- See companion paper FEDSM2021-63916

ASME[®] 2021

High-Order Eulerian, Continued

- Eulerian time step can use explicit R-K orders1→4
- Each R-K substep performs the following:
 - 1) Solve Poisson problem for streamfunction, then u=grad ψ
 - 2) Compute velocity jump at solid boundaries
 - 3) Compute diffused flux, walls use Neumann, open Dirichlet
 - 4) Compute convected flux, all boundaries use Dirichlet

ASME[®] 2021

- Eulerian solver provides solution near boundaries
- Lagrangian solver provides solution elsewhere
- Lagrangian solution provides spatial and temporal boundary conditions for Eulerian solver
- Eulerian solution feeds back to Lagrangian solution in an overlap zone near the body
- No iteration required

Hybridization - Visually

ASME[®] 2021 FEDSM

The American Society of Mechanical Engineers • ASME®

Hybridization - Overlap

Particle→grid and grid→particle operators

Hybridization – Time Step

- One outer (Lagrangian) time step performs:
 - 1) Half-step of diffusion (Vorticity Redistribution Method)
 - 2) 2nd Order Runge-Kutta convection step
 - 3) Second half-step diffusion
 - 4) Perform hybrid update

Hybridization – Hybrid Update

1. Lagrangian sends data to Eulerian:

- $-\omega$ and u at open boundary nodes at t and t+ Δ t
- − ω and p→g weights at all internal nodes at t and t+Δt
- 2. Eulerian system advances to time $t+\Delta t$
 - Set open BCs using linear interpolation from above
 - Advance Eulerian vorticity transport equations
 - − Adjust ω toward Lagrangian vorticity using p→g weights

ASME[®] 2021

Hybridization – Hybrid Update

- 4. Lagrangian system updates ω at time t+ Δ t
 - $^ \omega$ at all Eulerian solution nodes compared to ω evaluated from Lagrangian solution alone to find ω deficit
 - − The ω deficit is scaled by g→p weights and element areas
 - These are turned into new Lagrangian vortex particles
 - This process repeats 10 times or to 10-4 change

ASME[®] 2021

Re=1000 Lid-Driven Cavity

- Canonical 2-D test
- Compare results to steadystate solutions from
 Ghia *et al.* [1982] and
 Erturk *et al.* [2005]
- Medium resolution case:
 Δx=0.02, grid thickness=0.1

Lid-Driven Cavity, Continued

- Results at t=75
- Visually, Ghia, Erturk, and our medium-res results look identical

Lid-Driven Cavity, Continued

- Numerically closer to Erturk *et al*.
- 10 Eulerian substeps per Lagrangian step
- Dramatically fewer elements

Parameter	Erturk <i>et al</i> .	Present Method		
Δt_{grid}	∞	0.004	0.001	0.00025
Δx_{grid}	$0.001\bar{6}$	0.03	0.02	0.01
N _{grid}	361,201	324	900	3,600
Δt_{part}	-	0.04	0.01	0.0025
Δx_{part}	-	0.01549	0.00775	0.00387
$u_{x,y=0.18}$	-0.3869	-0.3659	-0.3792	-0.3847
$u_{x,y=0.94}$	0.4276	0.3901	0.4177	0.4251
$u_{y,x=0.15}$	0.3756	0.3676	0.3665	0.3732
$u_{y,x=0.91}$	-0.5263	-0.5216	-0.5169	-0.5241

Lid-Driven Cavity, Continued

Particles only

The American Society of Mechanical Engineers • ASME *

Re=9500 Cylinder

Re=9500 Cylinder Results

Effect of Cell Order

Hybrid, 12x864 2nd order

Hybrid, 8x576 3rd order

Hybrid, 6x432 4th order

- Vorticity at $t_R=3$, $\Delta t_{R,particle}=0.01$, $\Delta t_{R,grid}=0.001$
- Eulerian mesh extends to 1.1R
- $N_v \approx 150k$ at $t_R=3$

Effect of Size of Eulerian Region

Effect of Particle Resolution

The American Society of Mechanical Engineers • ASME [®]

Re=9500 Cylinder

- First high-order hybrid Lagrangian-Eulerian method
- Retains accuracy in high-gradient near-wall regions
- Requires much smaller Eulerian regions
- Open source package available at: https://github.com/Applied-Scientific-Research/Omega2D

- 3-D Implementation is already in progress
- Investigate limits of Eulerian region thickness and cell size/shape
- Speed up grid-to-particle transfer
- Support multiple moving bodies

Acknowledgements

 Research supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R01EB022180.

ASME[®] 2021 FEDSM Fluids Engineering Division Summer Meeting

VIRTUAL CONFERENCE AUGUST 10–12, 2021

A Hybrid High-Order Vorticity-Based Eulerian and Lagrangian Vortex Particle Method, the 2-D Case

FEDSM2021-65637

Mark J. Stock Adrin Gharakhani Applied Scientific Research, Inc.

